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Abstract. Metropolis is still one of the most popular algorithms used in the Bayesian analysis
of stochastic problems. It is often used when the a priori knowledge of the target distribution
is quite limited. However, the shape and size of the proposal distribution are known to be very
crucial for the convergence of the algorithm. For example, the classical random-walk jump can
often face convergence problems. In that sense, Differential Evolution Markov chain Monte Carlo
(DE) is an interesting alternative but can also have a low acceptance rate. Inspired by genetic
algorithm concepts, this work presents a new version of the DE algorithm in which a selection
step is introduced. The new methodology, DESk-McMC, is applied to a simple Bayesian inference
problem identified here as a polynomial “Black Box”. Different values of selection pressure are
studied. The results showed that the inclusion of the selection step significantly increased the
average acceptance rate of Markov chains.

Keywords. Markov chain Monte Carlo, Differential Evolution, Bayesian Analysis, Random Walk,
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1 Introduction

Recent increases in high-performance computing allied to better acquisition of dynamic flow
data have attracted interest in applying Bayesian methods to characterize and reduce the uncertain-
ties inherent in stochastic modeling, which is present in several science areas. This is particularly
desired for porous media fields in Geosciences, where the stochastic dimension can be massive [1].
The Bayesian inference is convenient in quantifying the added value of information from several
sources. At the same time, Markov chain Monte Carlo (McMC) methods provide a computational
framework for sampling from the a posteriori distribution.

The Metropolis algorithm [2, 3] and its variants are an important class of McMC algorithms
widely used in the Bayesian analysis of stochastic inverse problems. Despite their high compu-
tational cost, which, in some cases, can be prohibitive, McMC methods are regarded as the gold
standard technique for Bayesian inference [4].

It is well known that to ensure the computational efficiency of McMC algorithms, one should
choose the proposal distribution so that sampling from it would be fast and easy. Then, the shape
and size of the proposal distribution are known to be very crucial for the convergence of the Markov
chains [5, 6]. The standard random-walk jump is simple to understand and use but performs poorly
if the target distribution has unusual shape properties. Simple mixtures of Gaussian distributions
are simple examples that confuse the Random-Walk algorithm, leading to wrong distributions.

Ter Braak [7] developed an improvement in the Metropolis algorithm by incorporating Differ-
ential Evolution (DE) genetic algorithm ideas using multiple chains that are simulated in parallel.
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In their method, information is exchanged among the multiple chains, which yields an appropriate
scale and orientation for the jumping distribution. Multiple chains initiated from overdispersed
starting points can be used to monitor their convergence to the target distribution. The con-
vergence assessment is a critical step in McMC analysis, ensuring the reliability of the sampled
posterior distribution.

The present work introduces a novel customized scheme called Differential Evolution Markov
chain Monte Carlo with Selection, where a selection mechanism is included in the original DE
method. The technique is tested in a polynomial "Black-Box" model to identify how the selective
pressure affects convergence in terms of the acceptance rate [8] and Gelman-Brooks R̂ convergence
diagnoses [9].

2 Markov chain Monte Carlo method (McMC)

The Metropolis algorithm was initially introduced by [2] for computing properties of substances
composed of interacting individual molecules (when a symmetric proposal is used). [3] introduced
a generalization to non-symmetric proposals. This algorithm has been widely used in several areas
of science.

Let π(·) be the target distribution (distribution a posteriori) and q(θt,θ) the instrumental
proposal distribution, the Metropolis algorithm is given in Algorithm 1.

Algorithm 1 Metropolis McMC Algorithm [2]
1: procedure Metropolis(MaxIter) ▷ MaxIter: maximum number of iterations
2: Initialization: Generate the initial state θ1 from a priori distribution
3: for t = 1 to MaxIter do
4: Step 1. At state θt generate θ from the proposal distribution q(θt,θ)
5: Step 2. Take the new state as

θt+1 =

{
θ, with probability α(θt,θ)
θt, with probability 1− α(θt,θ)

, (1)

where α(θt,θ) = min

{
1,

π(θ)

π(θt)

}
.

6: end for
7: return {θ1, . . . ,θMaxIter+1}
8: end procedure

Next, we present three ways to propose the next step in the chain (proposal distribution).

2.1 Random-Walk Metropolis (RW)

From a starting point θ1, the Metropolis algorithm allows iteratively to produce and insert
new samples in a chain from the target based on acceptance criteria [2, 3]. The classic approach
for proposal is the Random-Walk where the jumping distribution is centered at the current d-
dimensional point θt then the proposal is given by

θ = θt + cϵ, (2)

where θt is the current element of the chain (or t-th element) and ϵ ∼ N(0,Σ), with Σ representing
the covariance matrix. Previous works by [8] and [6] described how to choose the jump step c and
reveal the optimal choice as c = 2.38/

√
d and Σ = cov(θ) (in the case of Gaussian targets and
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Gaussian proposals). The correct covariance for the target distribution is generally unknown but
can be estimated during the iterative process. However, approximating the covariance matrix may
be costly for high dimensions, and there is no guarantee that it will be symmetric and positively
defined. In most cases, in the absence of better information, the covariance of proposal distribution
is taken as the d× d identity matrix (Σ = Id), and c is determined experimentally.

2.2 Differential Evolution Metropolis (DE-McMC)

Consider Nc d-dimensional parameters θt
j , j = 1, 2, . . . , Nc, as members of a population Xt at

state t. The newly drawn samples for the chain j will be obtained through the expression

θj = θt
j + γ(θt

r1 − θt
r2) + e , (3)

where e is drawn from a symmetric distribution with a small variance compared to that of the
target one but with unbounded support. The simplest is e ∼ N(0, ηIn) with η small. Here, θt

r1 and
θt
r2 are randomly selected without replacement from Xt/{θtj}, i.e. j ̸= r1 ̸= r2 ̸= j. In resume,

the main factor of the DE-McMC is to use the exchange of information between the chains. The
critical value for γ is 2.38/

√
2d. Again, details can be found in [8].

2.3 Differential Evolution with Selection (DESk-McMC)

Several study cases performed by the authors of the present work have shown how DE is more
efficient than RW in exploring the parameter space [7, 10]. In particular when the dimension
increases. Significant modifications of the DE method were proposed by [10, 11] and others. This
work proposes a less intrusive modification. The novel method, called Differential Evolution with
selection (or just DESk-McMC), introduces a selection step in the choice of candidates r1 and r2
(Eq. 3). For this, we use the tournament scheme to randomly choose k ⩾ 2 elements of the current
iteration among the different chains. From this set of size k, we selected r1 and r2 as the two
highest-ranked individuals based on a fitness function. Note that if k = 2, the original DE-McMC
is recovered. Naturally, the value of k controls the selective pressure and must be carefully defined
to avoid destroying the variability (k ≪ Nc). Here, the fitness function is based on the relative
error given by Eq. 8.

3 Efficiency and convergence metrics

Efficiency is a problem dependency measure, but it is always related to the frequency with
which the proposed algorithm works as desired. In the Metropolis algorithm, this is reflected in
the ability to create samples that are probable to be accepted. If NA moves are accepted from
a total number of NT (per chain, after eliminating the burning state), a measure of percentage
acceptance rate can be defined as follows

ÂR =
NA

NT
× 100 . (4)

For the main convergence diagnostic metric it will be applied the Gelman-Brooks d-dimensional
multivariate potential scale reduction factor R̂ (or MPSRF) [9, 12]. Then, the convergence of the
chains to the stationary distribution is announced when the R̂ is sufficiently close to 1. What close
means varies from paper to paper, but values bigger than 1.2 are commonly unacceptable [12].
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4 Polynomial “Black-Box” application (BB)
In order to test the methodologies presented in Section 2, we create a polynomial “black box”

to emulate a Bayesian inference problem. The “black box” plays the role of a simulator in which
a 12-dimensional parameter is used as input, and three sets of data are produced as a result. Let
θ = [a1, . . . , a12]

T and x = [−1 : 0.1 : 1] the polynomial BB is defined as

BB(x,θ) =

 y1(x) = a1x
3 + a2x

2 + a3x+ a4,
y2(x) = a5x

3 + a6x
2 + a7x+ a8,

y3(x) = a9x
3 + a10x

2 + a11x+ a12

. (5)

Then, for each pair (x,θ) three data sets are produced (11 points (x, yi)). The data used as
reference, Dref =

[
yref1 , yref2 , yref3

]
, was synthetically produced as follows:

Dref = BB(x,θref) + ε, (6)

here, θref = [40,−3, 5, 12.5, 8,−25, 2.5, 35,−40, 25,−20, 60]
T and ε ∼ N(0, 10−3 · I3). Now, let

Dsim = BB(x,θ) be the simulated data, define the relative error as

E(θ) =
||Dsim −Dref ||2

||Dref ||2
=

3∑
i=1

||yi − yrefi ||2

||yrefi ||2
. (7)

Finally, assuming that the error between the reference and simulated data follows a Gaussian
distribution, the likelihood function π(θ) is approximated as

π(θ) = exp

(
−E(θ)

σ2

)
, (8)

where, σ = 0.01 is the precision.

4.1 Experimental results
To solve the inverse stochastic problem given in Section 4, the RW, RWcov, DE, and DESk

methods were used. RWcov means that the random walk was used; however, the proposed covari-
ance matrix was updated every Nb = 10000 iteration using a random sample of size 5000.

To avoid dimensionality and convergence problems, we chose to consider 40 parallel chains and
1 million iterations. Moreover, the starting points are sorted from a uniform U(−100, 100) to create
a well-spread start. For the random-walk scheme is used the step of c = 2.38/

√
12 ≈ 0.687 and

ϵ ∼ N(0, I12). On the other hand, the DE-like methods utilize the scaling factor γ = 2.38/
√
24 ≈

0.486 and e ∼ N(0, ηI12), with η = 10−4. The fitness function for the DESk-McMC was a simple
proportionality expression that returns higher values when the error is low. Furthermore, a doubled
jump step will be used on each 10th new iteration for all the simulations.

The results are summarized in the Table 1. In all the cases, the R̂ and ÂR values are also
calculated using Nb size batches. Except for RW, convergence of the chains was observed for all
other cases.

To characterize the marginal distributions, the first half of the 1 million total iterations of all
chains are removed as the burning period. From the 500000× 40 remaining part, Nb elements are
randomly sampled to represent the posterior distribution. With this sample, histograms for each
component of the parameter are constructed. The posterior distributions obtained for all methods
are very similar. All components of the parameter vector (for all methods) have a distribution
close to Gaussian. A Kolmogorov-Smirnov test was performed with 0.05 of significance, and the
normality hypothesis was not rejected in any case. For visualization, Figure 1 displays the results
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from the DESk-McMC with 9 competitors (or just DESk-9). The histograms (Figures 1c, 1d and
1e) are consistent with the estimated normal distributions associated. In addition, the R̂ curve
reveals how its value floated during the simulation but never was far from the 1.01 reference value.

Even in this didactic example, the DE method performed better than RW, even when adjusting
the jump covariance (RWcov). The results corroborate those reported by [7]. Here, performance
is first evaluated by the convergence criterion and then by the acceptance rate. Considering that
all DE-type methods converged quickly, only the acceptance rate was used to measure efficiency
among them. The results show that the newly proposed methodology increased the acceptance
rate as the value of k increased (up to a certain point). Additional simulations identified that
this phenomenon persists up to k = 23, with ÂR = 38.08% (Figure 2). However, high values for
k can lead to exaggerated selection pressure, and some unwanted biases can be introduced. It
seems reasonable that the critical value of k is at least related to the number of chains Nc. We
recommend using smaller values in the regions with the highest derivative of the curve shown in
Figure 2.

5 Final remarks

This paper introduced the novel DESk Metropolis algorithm. Results on a 12-dimensional
polynomial “black box” problem showed that the new approach substantially increases the simu-
lations’ acceptance rate. Additionally, the experiments induce the existence of a critical k value
which is probably related to the number of chains used in the simulation. On the other hand, high
selective pressures reduce the variability at the beginning, affecting convergence. In future works,
the authors intend to better investigate those characteristics and their theoretical bases. Beyond
that, it is an important goal to apply the methodology to more complex problems where the high
dimension and expensive function evaluations demand more efficient algorithms. In particular, the
authors are interested in permeability field problems in Geosciences [1] which actually motivated
this study to start.

Table 1: Simulation results for the Black-Box problem using 1000000 iterations and 40 chains.

Estimate RW RWcov DE
DESk

3 5 7 9

â1 N(40, 1) N(40, 0.9) N(40, 1) N(40, 1) N(40, 1) N(40, 1) N(40, 1)

â2 N(−3, 0.5) N(−3, 0.5) N(−3, 0.5) N(−3, 0.5) N(−3, 0.5) N(−3, 0.5) N(−3, 0.5)

â3 N(5.0, 0.7) N(5.0, 0.7) N(5.0, 0.7) N(5, 0.7) N(5, 0.7) N(5, 0.7) N(5, 0.7)

â4 N(12.5, 0.2) N(12.5, 0.2) N(12.5, 0.2) N(12.5, 0.3) N(12.5, 0.3) N(12.5, 0.3) N(12.5, 0.3)

â5 N(8, 1.1) N(8, 1.1) N(8, 1.1) N(8, 1.1) N(8, 1.2) N(7.9, 1.2) N(8, 1.2)

â6 N(−25, 0.6) N(−25, 0.6) N(−25, 0.6) N(−25, 0.6) N(−25, 0.6) N(−25, 0.6) N(−25, 0.6)

â7 N(2.5, 0.8) N(2.5, 0.8) N(2.5, 0.8) N(2.5, 0.8) N(2.5, 0.8) N(2.5, 0.8) N(2.5, 0.8)

â8 N(35, 0.3) N(35, 0.3) N(35, 0.3) N(35, 0.3) N(35, 0.3) N(35, 0.3) N(35, .0.3)

â9 N(−40, 3.1) N(−40.1, 3.1) N(−40, 3.1) N(−40, 3.2) N(−40, 3.2) N(−40, 3.2) N(−40, 3.2)

â10 N(25, 1.6) N(25, 1.6) N(25, 1.6) N(25, 1.7) N(25, 1.6) N(25.1, 1.7) N(25, 1.7)

â11 N(−20, 2.2) N(−20, 2.2) N(−20, 2.2) N(−20, 2.3) N(−19.9, 2.3) N(−20, 2.3) N(−20, 2.3)

â12 N(60, 0.8) N(60, 0.8) N(60, 0.8) N(60, 0.8) N(60, 0.8) N(60, 0.8) N(60, 0.8)

ÂR 1.0 18.8 23.5 26.6 30.5 32.8 34.3
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(a) Response time curves. (b) Gelman-Brooks diagnoses.

(c) Histograms for aj . (d) Histograms for aj . (e) Histograms for aj .

Figure 1: Result from the DESk-9 scenario with 40 chains and 1 million iterations. In (a) the deviations
are doubled for better visualization and the acceptance rate was embedded to complement the general
understanding of the results. Source: From authors.

Figure 2: Acceptance rate from the DESk-McMC as a function of the parameter k. Source: From authors.
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