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Abstract: With the ultimate goal of designing a scalable parallel preconditioner for reservoir
simulation problems, we combine domain decomposition ideas (prove suitable for parallelization)
with incomplete factorizations (which are standard in reservoir simulation) at subdomain level.
We introduce an ILU(k)-based two-level domain decomposition preconditioner and compare its
performance with a two-level ILU(k)-Block-Jacobi preconditioner.
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1 Definition of the Preconditioner

1.1 Preliminaries

We consider the (n× n) linear system of algebraic equations

Ax = b (1)

arising from the discretization of a PDE by a block-centered finite difference scheme with n
blocks. We identify blocks and their respective indexes, in a way that Ω will denote either the
domain of the PDE or the set of indexes {1, 2, . . . , n}. We introduce a disjoint partition of Ω,
i.e.,

{ΩJ}1≤J≤P such that
P⋃

J=1

ΩJ = Ω and ΩI ∩ ΩJ = ∅ ∀I 6= J.

Figure 1a displays an example of a domain Ω decomposed into subdomains ΩJ .
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Figure 1: 2D domain partitioned into four subdomains; discretization based on a 5-point stencil.
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Associated to each subdomain ΩJ , we define a local interface ΓJ ,

ΓJ =
{
j ∈ ΩJ |

(
∃K > J, such that ∃k ∈ ΩK with (ajk 6= 0 or akj 6= 0)

)}
, (2)

where aij is the entry at the i-th row and j-th column of A. We also define the subdomain
interior,

ΩInt
J = ΩJ \ ΓJ .

The (global) interface is then defined as

Γ =

p⋃
J=1

ΓJ .

We note that {ΓJ}1≤J≤P form a disjoint partition of Γ. See Figure 1b.
We define the set ΓJ as

ΓJ =

{
j ∈ Γ

∣∣∣∣(j ∈ ΓJ

)
or
(
∃k ∈ ΩJ such that (ajk 6= 0 or akj 6= 0)

)}
. (3)

Note that ΓJ ⊂ ΓJ ⊂ Γ. We point out that ΓJ is the result of augmenting ΓJ with the blocks of
the interface Γ whose corresponding equations/variables are connected to ΩJ in the graph of A.
We refer to ΓJ as an extended interface, see Figure 1c. We also define the extended subdomains
ΩJ = ΩInt

J

⋃
ΓJ , see Figure 1d.

Notice that ajk = 0 for any j ∈ ΩInt
J and k ∈ ΩInt

K , with J 6= K, so that, if the equa-
tions/variables corresponding to ΩInt

1 , . . . ,ΩInt
P are numbered consecutively followed by the ones

corresponding to Γ, A has the following structure:

A =


A11 A1Γ

. . .
...

APP APΓ

AΓ1 · · · AΓP AΓΓ

 . (4)

1.2 ILU(k) based Domain Decomposition

We now describe a two-level preconditioner M−1, featuring a fine component M−1
F described in

Subsection 1.2.1 and a coarse component M−1
C discussed in Subsection 1.2.2.

1.2.1 Preconditioner Construction

The fine part of the domain decomposition preconditioner we describe is based on the following
block LU factorization of A:

A = LU =


L1

. . .

LP

B1 · · · BP I



U1 C1

. . .
...

UP CP

S

 , (5)

where AJJ = LJUJ is the LU factorization of AJJ , BJ = AΓJU
−1
J , CJ = L−1

J AJΓ and

S = AΓΓ −
P∑

J=1

AΓJA
−1
JJAJΓ = AΓΓ −

P∑
J=1

BJCJ , (6)

is the Schur complement of A with respect to the interior points. The inverse of A is

A−1 =


U−1

1 −U−1
1 C1S

−1

. . .
...

U−1
P −U−1

P CPS
−1

S−1




L−1
1

. . .

L−1
P

−B1L
−1
1 · · · −BPL

−1
P I

 . (7)
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Our goal is to define a preconditioner M−1
F that approximates the action of A−1 on a vector.

For that sake, we need to define suitable approximations for the actions of L−1
J , U−1

J , BJ and
CJ , J = 1, . . . , P , and for that of S−1. In the remaining of this subsection, we describe how
these approximations are taken.

First we define L̃J and ŨJ as the result of the incomplete LU factorization of AJJ with level
of fill kInt, [L̃J , ŨJ ] = ILU(AJJ, kInt). Even though L̃J and ŨJ are sparse, L̃−1

J AJΓ and Ũ−T
J AT

ΓJ

(which would approximate CJ and BT
J ) are not. To ensure sparsity, we define C̃J ≈ L̃−1

J AJΓ

as the result of an incomplete triangular solve, by extending the definition of level of fill as
follows. Let vl and wl be the sparse vectors corresponding to the l-th columns of AJΓ and
L̃−1
J AJΓ respectively. Based on the solution of a triangular system by forward substitution, the

components of vl and wl are related by

wlk = vlk −
k−1∑
i=1

L̃Jkiwli . (8)

We define the level of fill-in of component k of wl recursively as

Lev(wlk) = min

{
Lev(vlk), min

1≤i≤(k−1)

{
Lev(L̃Jki) + Lev(wli) + 1

}}
, (9)

where Lev(vlk) = 0 when vlk 6= 0 and Lev(vlk) = ∞ otherwise, and Lev(L̃Jki) is the level of fill

of entry ki in the ILU(kInt) decomposition of AJJ when L̃Jki 6= 0 and Lev(L̃Jki) =∞ otherwise.

The approximation C̃J to CJ = L−1
J AJΓ is then obtained by what we call incomplete forward

substitution with level of fill kBord, in which we drop any terms with level of fill greater than
kBord during the forward substitution process. We denote C̃J = IFS(L̃J , AJΓ

, kBord). Notice that

when kBord = kInt, C̃J is what would result from a standard partial incomplete factorization of
A. The approximation B̃J to BJ = AΓJ Ũ

−1
J is defined analogously.

Similarly, in order to define an approximation S̃ to S, we start by defining FJ = B̃J C̃J and
defining a level of fill for the entries of FJ ,

Lev(FJkl) = min

{
Lev(AΓΓkl

), min
1≤i≤m

{
Lev(B̃Jki) + Lev(C̃Jil) + 1

}}
, (10)

where m = #ΩInt
J is the number of columns in B̃J and rows in C̃J , Lev(AΓΓkl

) = 0 when

AΓΓkl
6= 0 and Lev(AΓΓkl

) = ∞, otherwise, and Lev(C̃Jki) is the level of fill according to

definition (9) when C̃Jki 6= 0 and Lev(CJki) =∞, otherwise
(

Lev(B̃Jil) is defined analogously
)
.

Next, we define F̃J as the matrix obtained retaining only the entries in FJ with level less than or
equal to kProd according to (10). We refer to this incomplete product as F̃J = IP(B̃J , C̃J , kProd).

S̃ is then defined as

S̃ = AΓΓ −
P∑

J=1

F̃J . (11)

We remind the reader that while S̃ approximates S, we need to define an approximation for S−1.
Since S̃ is defined on the global interface Γ, it is not practical to perform ILU on it. Instead, we
follow the approach employed in [3] and define for each subdomain a local version of S̃,

S̃J = RJ S̃R
T
J , (12)

where RJ : Γ→ ΓJ is a restriction operator such that S̃J is the result of pruning S̃ so that only
the rows and columns associated with ΓJ remain. More precisely, if {i1, i2, . . . , inΓJ

} is a list of

the nodes in Γ that belong to ΓJ , then the k-th row of RJ is eTik , the ik-th row of the nΓ × nΓ

identity matrix,

RJ =

 eTi1
...

eTinΓ

 .
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Finally, our approximation S−1
F to S−1 is defined as

S−1
F =

P∑
J=1

TJ(L
S̃J
U
S̃J

)−1RJ ≈
P∑

J=1

TJ S̃
−1
J RJ , (13)

where L
S̃J

and U
S̃J

are by ILU(kΓ) of S̃J . Here TJ : ΓJ → Γ is an extension operator that takes

values from a vector that lies in ΓJ , scales them by wJ
1 , . . . , w

J
nΓJ

(which we call weights), and

places them in the corresponding position of a vector that lies in Γ. Therefore, using the same
notation as before, the k-th column of TJ is wJ

k eik ,

TJ =
[
wJ

1 ei1 · · · wJ
nΓ
einΓ

]
.

We consider three different choices for the weights, giving rise to three options for TJ , which we
denote T ones

J , Twas
J and T ras

J .
T ones
J corresponds to the choice wJ

i = 1, i = 1, . . . , nΓJ
, so that T ones

J = RT
J . We define the

so called counting function on the interface as

µ =
P∑

J=1

T ones
J 1J ,

where 1J is a vector that lies in ΓJ with all entries equal to 1. The i-th entry of µ, denoted µi,
counts how many extended interfaces the i-th interface node belongs to.

Twas
J corresponds to the choice wJ

i = µ−1
i . We point out that Twas

J , J = 1, . . . , P, form a

partition of unity, in the sense that
∑P

J=1 T
was
J 1J = 1Γ, where 1Γ is an interface vector with all

entries equal to 1.
At last, in order to define T ras

J , we define

wJ
k =

{
1, if the ik-th node of Γ belongs to ΓJ

0, if the ik-th node of Γ belongs to ΓJ \ ΓJ .

We note that Twas
J , J = 1, . . . , P, also form a partition of unity. The notations “ras” and “was”

are motivated by the Restricted and Weighted Additive Schwarz methods, see [2].
These three different choices for TJ yield three different versions of the preconditioner, which

we refer to as ONES, RAS, and WAS.

1.2.2 Coarse Space Correction

We define a coarse space spanned by the columns of an (n × P ) matrix that we call RT
0 . The

J-th column of RT
0 is associated to the extended subdomain ΩJ and its i-th entry is

(RT
0 )iJ =

{
0, if node i is not in ΩJ and

µ−1, if node i is in ΓJ ,

where µi = number of ΩJ ’s s.t. i ∈ ΩJ . Notice that (RT
0 )iJ = 1 ∀i ∈ ΩInt

J and that the columns
of RT

0 form a partition of unity, in the sense that their sum is a vector with all entries equal to
1.

We define MC by the formula

M−1
C = RT

0 (R0AR
T
0 )−1R0 (14)

Notice that this definition ensures that M−1
C A is a projection onto range(RT

0 ) and that for
A symmetric positive definite this projection is A-orthogonal. Since R0AR

T
0 is small (P × P ),

we use exact LU (rather than ILU) when applying its inverse.
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Figure 2: On the left, the basic 12 × 12 tile used in the experiments with heterogeneous field.
On the right, a composition of 3× 5 such tiles, suitably reflected.

Finally, the complete preconditioner has two components: one related to the complete grid,
called M−1

F in equation (7), and another related to the coarse space (14). The combined pre-
conditioner is written down as

M−1 = M−1
F +M−1

C . (15)

This formulation implies that the preconditioner will be applied additively and can be interpreted
as having two levels, see [3]. This preconditioner is called algebraic ILU(k) based two-level
domain decomposition, or simply Schur, in the following sections.

2 Numerical Experiments

2.1 Description of the Models

In order to evaluate the performance of the proposed preconditioners, we designed two sets of
numerical experiments.

All the experiments that we present regard the solution of a linear system Ax = b. We
use a matrix associated with the modeling of three-dimensional single-phase incompressible
flow in porous medium with a seven-point block-centered finite-difference discretization of the
differential operator ∇ ·K∇, imposing Dirichlet boundary conditions.

We considered two models, which we refer to as homogeneous, and heterogeneous. The first
model assumes a homogeneous and isotropic field K. For our heterogeneous model, we generated
a 12× 12 “tile” of values for K, as shown in the left side of Figure 2. This tile is a realization of
a stationary log-normal distribution with an anisotropic Gaussian covariance function (see [5],
Section 5.4). Each layer of the field K was then created by the tiling of this 12 × 12 module
(upon suitable reflections, in order to maintain smoothness). All layers were made identical
(i.e., K = K(x, y) and not K = K(x, y, z).) The resulting fields were heterogeneous (with
values varying two orders of magnitude), yet isotropic. The tile and the resulting 5 × 3 tiling
are given in Figure 2.

2.2 Description of the Tests and Results

We use right-preconditioned GMRES with a restart of 30. The initial guess is zero, the stopping
criterion is the reduction of the relative residual to less than 10−4, and the maximum number
of internal iterations is 500. The code is written in Matlab and C, using Matlab’s mex feature,
in order to improve the performance. The current version of the code is sequential, therefore
we don’t report CPU times, but only iteration counts. Using gcc as the C compiler, the Tests
were run in a system featuring an 8-core 2.2GHz Intel Core i7-3632QM CPU (hyperthreading
enabled) and 8GiB of main memory.
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Table 1: Comparing three solvers for a homo-
geneous problem.

Preconditioners

Subdomains None Jacobi Schur

2× 2× 2 56 16 12
5× 5× 5 191 25 18
8× 8× 8 353 25 18

Table 2: Comparing three solvers for a hetero-
geneous problem.

Preconditioners

Subdomains None Jacobi Schur

2× 2× 2 329 16 12
5× 5× 5 NC 36 23
8× 8× 8 NC 33 21

Table 3: Schur alternatives without coarse for
a heterogeneous problem.

Without Coarse

Subdomains ONES RAS WAS

2× 2× 2 17 11 11
4× 4× 4 57 33 32
6× 6× 6 31 50 50
8× 8× 8 103 57 56

Table 4: Schur alternatives with coarse for a
heterogeneous problem.

Coarse

Subdomains ONES RAS WAS

2× 2× 2 16 12 12
4× 4× 4 29 21 20
6× 6× 6 30 21 21
8× 8× 8 33 22 21

In the first set of experiments, we compare the Schur preconditioner with inexact block Jacobi
preconditioner [4], both using a coarse space correction operator as described in Section 1.2.2.
In this batch of tests, we used version WAS of the Schur preconditioner, with all fill-in levels set
to one. Table 1 and Table 2 compare the iterations of the homogeneous and the heterogeneous
models, with 8, 125, and 512 subdomains, arranged in a 3D cube. Each subdomain has a fixed
size of 12×12×12 = 1728 blocks. These tables show the number of GMRES internal iterations,
and for each problem (each line of the table), the smaller one is highlighted. NC indicates no
convergence (more than 500 iterations). There is a column, None, which informs the number of
GMRES iterations with no preconditioner.

Tables 3 and 4 show a comparison for the six versions of the Schur preconditioner described in
Subsection 1.2 when solving the heterogenous problem. Table 3 presents the number of iterations
without the coarse component, whereas Table 4 reports those with the coarse component. Here
there are 8, 64, 216, and 512 subdomains, arranged in a 3D cube. All the next tables use this
same set of values for the subdomains.

Tables 5 and 6 present the number of iterations for the Schur preconditioner when solving
the heterogeneous problem, using the WAS version with a coarse space correction. In this case,
we are interested in the variation of the different fills, kInt, kΓ, kBord, and kProd as described in
Section 1.2.1. We show results when combining fills 0 and 1. In Table 5 we present the number
of GMRES iterations for kInt = 0 and in 6 for kInt = 1. In those tables, the header 011, for
instance, stands for kΓ = 0, kBord = 1, and kProd = 1, and so forth.

Table 5: Fill variation for kInt = 0

XYZ where X=kΓ Y=kBord Z=kProd

Subdomains 000 001 010 100 011 101 110 111

2× 2× 2 15 15 14 15 14 15 14 14
4× 4× 4 23 22 22 22 21 22 21 21
6× 6× 6 23 23 23 23 22 23 22 22
8× 8× 8 23 23 23 23 23 23 23 22
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Table 6: Fill variation for kInt = 1

XYZ where X=kΓ Y=kBord Z=kProd

Subdomains 000 001 010 100 011 101 110 111

2× 2× 2 14 14 13 13 13 13 12 12
4× 4× 4 23 23 23 22 22 22 21 20
6× 6× 6 24 23 23 23 22 22 22 21
8× 8× 8 24 24 23 23 23 23 22 21

2.3 Discussion

Although we address here only a few tests, in all the thousands of experiments we have per-
formed, the Schur preconditioner took less iterations than Jacobi. In favor of the Jacobi al-
ternative one can argue that there is less communication among the subdomains during its
application, but we are able to cope with this advantage by overlapping communication and
computation, as reported in the literature of the area, see [3]. The coarse space correction plays
an essential role and we expect to see a similar behavior when dealing with systems arising
from reservoir simulation problems. Even though the various levels of fill in the different parts
of the preconditioner did not seem to play a role in the reported experiments, we believe that
this flexibility of the method might be advantageous when tackling actual reservoir simulation
matrices.

3 Future work

Our next step is extending our experiments to actual reservoir simulation matrices, provided by
Petrobras. For this sake, we are currently implementing a parallel version of the preconditioner
in PETSc [1].

Another challenge is to adapt the coarse space, tailoring it for this new kind of systems,
which couples variables such as pressures and saturations.
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