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Abstract. We consider a scenario where two fleets of unmanned aerial vehicles are tasked with
communicating information among fleet members while simultaneously trying to prevent the op-
posite fleet from achieving their goal. Using the properties of the electromagnetic spectrum, we
model the task of each fleet as a continuous optimization problem, leading to a highly nonlinear
zero-sum Nash game encoding the preferences of both fleets. A fixed-point reformulation of the
game provides us with a block-descent algorithm, for which we provide some first numerical results.
Keywords. Nash games, UAVs, Drones, Electronic Warfare, Fixed-Point Algorithms

1 Introduction

Electronic Warfare (EW) is a military domain that involves the use of the electromagnetic spec-
trum to gain an advantage in various operational environments. An electronic attack like jamming
aims to interfere with the adversary’s ability to collect or disseminate information. Communica-
tions jamming is directed at disrupting radio systems & involves transmitting interfering signals
on the same frequency as the targeted communication system, making it difficult for the intended
message to be received. Unmanned aerial vehicles (UAVs or drones) and EW represent critical
components in modern military and security strategies. In the context of EW, drones play a sig-
nificant role both as platforms for EW systems and as potential targets. Drones equipped with
EW capabilities can stage jamming attacks, whilst being susceptible to EW themselves.

In this work, we consider two fleets of UAVs that are antagonistic to each other. Members or
agents of each fleet are tasked with sharing information between other members of their fleet, i. e.
they want to send and receive data. However, they also have the option to degrade or interrupt
the information flow between members of the other fleet. Of crucial importance in this model is
the ability of each agent to be mobile, i. e. to spend some of its energy to move around in space.
By moving closer to an agent of the same fleet, information exchange between these two agents is
improved. By moving closer to agents of the opposite fleet, interrupting the information flow of
the opposition (jamming) is ameliorated.

We model this problem as a novel Nash game, where both players control their relevant fleets.
For each agent, decision variables include the power expenditure to communicate with other agents
of the same fleet, power expenditure to jam communication between pairs of agents in the opposite
fleet, and power expenditure for and direction of any movement. Previous attempts at modeling
this problem either use stationary agents only [8] or allow only one jamming agent to move [2].
Our communication and jamming model reflects the underlying physical reality of communication
within the electromagnetic spectrum and contains no linearizations. In this note, we focus on the
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electromagnetic and spatial aspects of the problem and leave considerations of flight dynamics to
a more extensive version of this work.

Our model follows the work of Khanafer et al [8], who considered a similar Nash game with
two fleets of stationary agents, each fleet consisting of only two agents. Gupta et al [7] consider
a game with incomplete information in which one player tries to jam the connection between a
transmitter and a receiver. Other game-theoretic models on jamming UAVs are discussed in [4,
9, 10, 14, 15, 17], while Mkiramweni et al [11] provide a survey of game-theoretic approaches for
UAVs and wireless networks.

2 The Model
Suppose we have given two finite index sets F and G, with F ∩ G = ∅, denoting two fleets

of agents or UAVs. We use indices i, j, k, ℓ ∈ F ∪ G to indicate agents, and will usually use the
convention i, j ∈ F and k, ℓ ∈ G, unless explicitly stated otherwise. For each i ∈ F , k ∈ G, we
have been given locations x0

i , x
0
k ∈ R2 and a maximum amount of energy to spend, Pmax

i , Pmax
k .

Suppose that agents i and j are on the same team and that i wants to communicate some data
to j. Following [8], if i uses pi,j amount of power for this communication (i. e. it sends a signal of
strength pi,j), then j receives an amount of power pRi,j equal to

pRi,j = ϱpi,jd
−α
i,j (1)

with di,j = ∥xi − xj∥ the Euclidean distance between i and j. In the above and in what follows,
we always assume xi ̸= xj , and in all formulations of optimization problems, we consider implicit
constraints to this effect. The constant α is the so-called path-loss coefficient that depends on the
environment (atmospheric conditions, terrain, etc) in which i and j try to communicate and is
usually between 2 and 4. The constant ϱ depends on the design of the antennas of i and j and the
signal wavelength in use; in what follows we will assume that ϱ does not depend on i or j.

A crucial quantity is now the signal-to-interference-and-noise ratio SINRi,j , defined as

SINRi,j =
pRi,j

σ2 + Ij
, (i, j ∈ F, i ̸= j). (2)

Here, σ2 > 0 represents background noise due to solar radiation etc. Furthermore, Ij is the total
interference power received by j due to jamming. Suppose that each agent k from the opposite
team uses a power of pJk,j to jam all communications of player j. Then we have

Ij =
∑
k/∈F

ϱpJk,jd
−α
k,j , (j ∈ F ) (3)

and the summation is over all agents of team G. In total, we have

SINRi,j =
ϱpi,jd

−α
i,j

σ2 + ϱ
∑

k/∈F pJk,jd
−α
k,j

, (i, j ∈ F, , i ̸= j). (4)

It is this quantity SINR that agents i and j want to maximise, as it is closely related to
various performance indices used in wireless communications. For digital data, the bit error rate
(the average number of bits received by agent j which are received incorrectly) can be directly
expressed in terms of SINRi,j , see [12].

In total, the first objective of the fleet of agents F is thus

max
pi,j ,xi,xj

∑
i,j∈F
i̸=j

ϱpi,jd
−α
i,j

σ2 + ϱ
∑

k/∈F pJk,jd
−α
k,j

, (5)
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where the decision variables are the power levels pi,j (i, j ∈ F , i ̸= j) and the locations xi, xj ∈ R2

(i, j ∈ F ) determining di,j = ∥xi − xj∥, dk,j = ∥xk − xj∥ (k /∈ F ). Note that the power levels
pJk,j are decision variables of the opposite fleet with agents indexed by k. In turn, fleet F controls
decision variables pJj,k (j ∈ F, k /∈ F ) that show up in the corresponding objective of the opposite
fleet.

However, note that in this objective the effect of jamming agents of fleet G is not taken into
account. We therefore consider now the first objective of fleet G, that fleet G wants to maximize,
as an objective to be minimized. The second objective of fleet F is thus

min
pJ
i,ℓ,xi

∑
k,ℓ/∈F
k ̸=ℓ

ϱpk,ℓd
−α
k,ℓ

σ2 + ϱ
∑

i∈F pJi,ℓd
−α
i,ℓ

(6)

Each agent i has a starting position x0
i ∈ R2. If the agent then moves to xi before sending or

jamming, then this accrues an energy expenditure of ci∥xi − x0
i ∥, where ci is a suitable constant.

For fleet F , we have thus decision variables as follows: pi,j (i, j ∈ F , i ̸= j) power used to
communicate from i to j; pJi,k (i ∈ F , k /∈ F ) power used to jam the communication of opposite
agent k /∈ F ; xi (i ∈ F ) location of agent i after movement and before communication and jamming
takes place. For ease of notation, we collect all these decision variables into a vector x. Fleet G
has exactly the same types of decisions to make for members of fleet G, and we denote by y the
corresponding vector of decision variables.

We can then write the two objectives of fleet F as one bi-objective optimization problem

max
x=(pi,j ,pJ

i,k,xi)

[
f1(x, y)
−f2(x, y)

]
:=


∑
i,j∈F
i̸=j

ϱpi,j∥xi − xj∥−α

σ2 + ϱ
∑

k/∈F pJk,j∥xk − xj∥−α

−
∑
k,ℓ/∈F
k ̸=ℓ

ϱpk,ℓ∥xk − xℓ∥−α

σ2 + ϱ
∑

i∈F pJi,ℓ∥xi − xℓ∥−α

 . (7)

Note that this problem has parameters y, which are the decision variables of the opposite fleet.
As constraints, we have the power constraint for each agent i,∑

j∈F
j ̸=i

pi,j +
∑
k/∈F

pJi,k + ci∥xi − x0
i ∥ ≤ Pmax

i (i ∈ F ), (8)

a constraint on the movement of each agent i,

∥xi − x0
i ∥ ≤ δi (i ∈ F ) (9)

with δi > 0 some given parameter, and pi,j , p
J
i,k ≥ 0 (i ∈ F, j ∈ F, i ̸= j, k /∈ F ). We denote the

feasible set of fleet F by C1. The constraints for fleet G have exactly the same structure, and we
denote the corresponding feasible set by C2. With this, fleet G faces the problem

max
y∈C2

[
f2(x, y)
−f1(x, y)

]
, (10)

parameterized in x. The decision variables of fleet F .

Remark 2.1. Note that it is straightforward to generalise the problem above to one in which agents
can only communicate with selected members of their team.

Remark 2.2. Without loss of generality, we can assume that the power constraint (8) is active,
as the first objective is strictly monotone in the pi,j and the second objective is strictly monotone
in the pJi,ℓ.
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In what follows we scalarize both problems in the standard fashion; the two fleets then face
the problems

max
x∈C1

f1(x, y)− f2(x, y) (11)

max
y∈C2

f2(x, y)− f1(x, y). (12)

Thus, the objectives of the two fleets are essentially the same; they just ’swap’ the variables x and
y around. The proposition below follows directly from this observation and formalizes it.

Proposition 2.1. Let both fleets have the same number of agents. Suppose that all parameters
ci are identical to each other and that all parameters Pmax

i are identical to each other. Assume
further that the set of starting points of the two fleets are identical, {x0

i | i ∈ F} = {x0
k | k /∈ F}.

Then the two sets of feasible points are identical, C1 = C2. Moreover, we have

f1(x, y) = f2(y, x). (13)

Considering the problem at hand as a zero-sum Nash game, we are looking for an equilibrium,
i. e. a pair of decisions (x∗, y∗) ∈ C1 × C2 for which we have

f1(x
∗, y∗)− f2(x

∗, y∗) ≥ f1(x, y
∗)− f2(x, y

∗) ∀x ∈ C1, (14)
f2(x

∗, y∗)− f1(x
∗, y∗) ≥ f2(x

∗, y)− f1(x
∗, y) ∀y ∈ C2, (15)

Since all functions involved are sufficiently smooth, we can characterise such equilibria by their
KKT conditions. To solve such conditions numerically, one often resorts to an MPEC (Mathe-
matical Program with Equilibrium Constraint) solver. However, extensive numerical tests with
state-of-the-art MPEC solvers have shown that this approach does not seem to be numerically
feasible in our case, as all such solvers get stuck at infeasible points. In the next section, we will
therefore provide an alternative numerical approach, based on a fixed-point formulation of the
problem.

3 Fixed-Point Formulations
Denote by θF and θG the objectives (to be minimized) of both fleets F and G, i. e. θF = −f1+f2

and θG = −θF . For a given (x̂, ŷ) we consider the optimization problem

min
x,y

θF (x, ŷ) + θG(x̂, y) (16)

subject to x ∈ C1, y ∈ C2. (17)

Suppose that (x∗, y∗) is a solution to this problem. It is well known (see [13]) that (x∗, y∗) is a Nash
equilibrium if (x∗, y∗) = (x̂, ŷ), i. e. if (x∗, y∗) is a fixed point of the solution mapping of (16)–(17).

A standard approach to circumvent numerical issues related to the nonuniqueness of any opti-
mum of (16) is to add a regularisation term and consider

min
x,y

θF (x, ŷ) + θG(x̂, y) + r(∥x− x̂∥2 + ∥y − ŷ∥2) (18)

subject to x ∈ C1, y ∈ C2 (19)

with a parameter r ≥ 0.
The following block-descent algorithm then provides a fixed-point iteration for our Nash game:

1. Choose r ≥ 0 and x̂ ∈ C1 and ŷ ∈ C2.
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2. Solve (18)–(19). Denote the result by (x, y).

3. Set (x̂, ŷ) := (x, y).

4. Update r.

5. Goto step 2.

Step 2 of the algorithm can obviously be split up into solving the two problems

min
x

θF (x, ŷ) + r∥x− x̂∥2, (20)

min
y

θG(x̂, y) + r∥y − ŷ∥2, (21)

which can be done in parallel. Both correspond to "best response" optimization problems, i. e. (20)
computes the strategy of fleet F if it is known that fleet G will deploy strategy ŷ. The overall
algorithm is thus one of successive improvements in strategies x and y. A convergence proof for
the case of the block-descent algorithm applied to convex functions can be found in [5], who also
describe various adaptations like solving only for ε-minima in each step, appropriate strategies for
changing the parameter r, etc. Further convergence results are discussed in [1, 6, 16] under quite
general conditions.

Theorem 3.1. Denote by Z := (zk)k = (xk, yk)k the sequence generated by the above algorithm.
Let the sequence of regularization parameters (rk)k be such that 0 < rL ≤ rk ≤ rU for some
constants rL, rU > 0.

1. Suppose that Z has an accumulation point. Then every accumulation point of Z is a critical
point to problem (16)–(17).

2. Denote by Ξ the set of critical points of our problem. Then dist(zk,Ξ) → 0. If Ξ contains
uniformly isolated points, then Z converges to a point in Ξ.

3. Let α be an even integer and let (x1, y1) be sufficiently close to a global minimizer. Then Z
converges to a global minimizer.

Proof.

1. This follows directly from Proposition 7 in [6] or from Theorem 2.3 of [16].

2. The sequence Z is bounded, as it contains only feasible points. Moreover, the set of feasible
points C1 does not depend on the decisions y of the second player, fleet G, and vice versa.
The result then follows from Corollary 2.4 in [16].

3. Let us rewrite problem (16)–(17) as

min
z=(x,y)

f(z) + r1(x) + r2(y), (22)

where f is the original objective and ri is the indicator function of Ci. Both sets Ci are
semi-algebraic. Likewise, it is easy to see that the function f is semi-algebraic for even in-
tegers α. Therefore, the unconstrained problem (22) has a semi-algebraic objective which
thus fulfils the Kurdyka-Łojasiewicz inequality at every global solution. Next, we note that f
is Lipschitz-continuous on C1 × C2, and that the proof of Lemma 2.6 of [16] only requires
this Lipschitz-continuity on the set of feasible points. Thus, all assumptions for a slightly
strengthened version of Lemma 2.6 of [16] are fulfilled, and the result follows with Corol-
lary 2.7 of [16].
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4 A Numerical Example
In this section, we provide an illustrative example to demonstrate the efficacy of our approach.

We consider two fleets of agents F = {A,B} and G = {α, β}. For all UAVs i we use the same
parameters ci = 0.2, Pmax

i = 1, as well as the path loss coefficient α = 1 and the constants ϱ = 1,
σ2 = 1. Furthermore, we consider starting positions x0

A = (−0.1, 1), x0
B = (0.1, 1), x0

α = (−1,−1),
and x0

β = (1,−1). The regularization parameter of the algorithm is set to r = 10−3.
We have implemented the block-descent method and both problems (20) and (21) in AMPL

release 20230430 and solved them with KNITRO v13.1 [3]. Numerical results exploring various
parameter sets for both problems indicate that KNITRO always solves our problems to optimality
in less than 15 iterations. Likewise, for the block-descent algorithm the objective function value
θF + θG always converges within 5 steps. This behaviour is in line with Theorem 3.1.

To provide some insight into the dynamics of the scenario, we now vary the parameter δ := δi
for all agents i ∈ F ∪ G and consider optimal solutions for the five Nash games specified by the
parameters above and δ = 1, . . . , 5. Figure 1 (a) shows pA,B , pB,A, and ∥xA − xB∥ varying over δ.
Figure 1 (b) shows the optimal locations of all four agents for the five games considered. It can
be seen that both the spatial characteristics of the equilibria computed as well as their power
expenditures vary considerably, indicating the importance of considering as decision variables not
only power expenditure but also the location of UAVs in games that model electronic warfare.

(a) Power expenditure for agents of team F and dis-
tance between agents at the computed equilibria, for
varying values of δ.

(b) Locations of agents at different equilibria. The
radii of the circles are proportional to the power
spent. The colours green and red represent commu-
nications and jamming, respectively.

Figure 1: Numerical results for different values of δ. (Source: from the authors.)
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