
Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Convergence Analysis of Physics-Informed Neural Networks
and Comparison with Finite Difference Methods of the

Two-Dimensional Heat Equation

Vitor Bueno1

PPG-Ccomp/UERJ e PESC/UFRJ, Rio de Janeiro, RJ
Cristiane Faria2, Karla Figueiredo3

IME, UERJ, Rio de Janeiro, RJ
Fabio dos Santos4

COPPE/UFRJ, Rio de Janeiro, RJ

Resumo. Partial differential equations (PDEs) are used in mathematics to describe physical
phenomena. However, analytical solutions are often unavailable, requiring approximations. The
physics-informed neural network (PINN) is a recent technique that combines deep neural net-
works with physical knowledge leveraging automatic differentiation techniques, to provide accurate
approximations. This work analyzes the convergence of the PINN method, considering the dis-
cretizations and architecture of the networks. PINN approximations were compared with Finite
Difference Methods (FDM) in the case of the two-dimensional heat equation. The experiments
carried out suggested that there is an optimal number of points and architectural parameters to be
used, which can lead to an improvement in the generalization and estimation error. It was possible
to see an advantage over FDM as it approximates the solution of all the time steps at once, without
propagating the error from one step to the next.

Palavras-chave. PINN, Convergence Analysis, Comparative Study, FDM, Two-Dimensional Heat
Equation.

1 Introduction
Partial Differential Equations (PDE) are an essential area of mathematics used to describe

physical and natural phenomena that involve continuous/discontinuous variations and changes in
several independent or dependent variables. In most cases, analytical solutions are unavailable, so
numerical methods are used to obtain approximate solutions for these complex systems.

Among all new proposals, approaches using machine learning (ML) methods are increasingly
used in all research areas. In simple terms, the standard ML approach is to obtain knowledge of
the problem at hand by extracting and integrating the pattern and behavior of previously acquired
data to predict the outcome of new data. When analyzing these problems through this scope, it was
noticed that limitations remain when using purely data-driven models in real-world applications.
These arise as a need for robustness, interpretability, and adherence to physical constraints.

Researchers have proposed various methods to incorporate physical knowledge into machine
learning, termed Physics-Informed Machine Learning. Deep neural networks became a natural

1vitorb@cos.ufrj.br
2cofaria@ime.uerj.br
3karlafigueiredo@ime.uerj.br
4fsantos@cos.ufrj.br

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, v. 11, n. 1, 2025.

Trabalho apresentado no XLIII CNMAC, Centro de Convenções do Armação Resort - Porto de Galinhas - PE, 2024

DOI: 10.5540/03.2025.011.01.0343 010343-1 © 2025 SBMAC

http://dx.doi.org/10.5540/03.2025.011.01.0343


2

choice for handling PDE due to their universal function approximation property. While early
attempts [1] used multilayer perceptrons, they lacked the accuracy of established numerical meth-
ods. The concept was later revitalized by Raissi, Perdikaris, and Karniadakis in 2019, leading to
the Physically Informed Neural Networks (PINN) method [2]. The PINN method addresses data
scarcity by leveraging physical properties and minimizing generalization errors in regions with
limited data. The contribution of the PINN was a simple yet powerful way to implement prior
physical knowledge in training these networks using developments in automatic differentiation [3]
to provide solutions for various types of PDE.

This work aims to evaluate the approximation solution of the two-dimensional heat equation,
from the perspective of the estimation and the approximation errors. Previous works on this
topic by the authors can be found at [4], [5]. The estimation error is analyzed to understand
how the approximation of the solution is affected by the discretization used to train the network.
In contrast, the approximation error is analyzed to understand how the approximation of the
solution is affected by the class of neural networks chosen. An optimal number of points and
architectural parameters are found through the tests carried out. In addition, comparative studies
of the accuracy of the optimum PINN approximation with some Finite Difference Methods (FDM)
are shown, confirming the efficiency of the PINN.

2 PINN
Multilayer perceptron is the neural network used in this work to approximate the solution in

the PINN framework. The set θ represents the trainable parameters (weights and bias), which
are optimized through the minimization of a loss function L(θ) in the training process by some
gradient descend optimization technique. The gradients are calculated using the backpropagation
algorithm; each update of the parameters in some epoch of training i is given by θi = θi−1−η▽L,
where η is the learning rate. The goal is to find θ∗ = argminθL(θ).

The PINN approach considers the solution to a PDE to be in the form of a neural network
uθ(x); this network is used to calculate the approximate solution of a generic differential equation
of the form: F (t, x, uθ(t, x); γ) = 0 t ∈ [0, T ], x ∈ Ω

I(x, uθ(0, x)) = 0 x ∈ Ω
B(t, x, uθ(t, x)) = 0 t ∈ [0, T ], x ∈ ∂Ω

(1)

In the equation (1), θ represents the network parameters, F is a general differential operator
that can consist of temporal derivatives, spatial derivatives, linear and non-linear terms, x is the
position vector in the domain Ω, with boundary ∂Ω, I and B denote, respectively, the initial and
boundary conditions and can also consist of differential, linear or non-linear operators.

PINN’s incorporation of the prior physical knowledge is done using the property of automatic
differentiation [3] to differentiate neural networks output with respect to it’s input, calculating
the residual of the differential equation and incorporating it as a soft constraint in the loss func-
tion being minimized during the training. That way the approximation adheres to the physical
condition of the problem described by the same differential equation [2]. The main idea of auto-
matic differentiation is that all numerical calculations are ultimately compositions of a finite set of
elementary operations for which the derivatives are known; combining the derivatives of the con-
stituent operations via the chain rule gives the derivative of the overall composition [3]. Expressing
the entire domain during training is impossible, making discretizations necessary. Therefore, the
implemented loss function is the equation 2 [2], [6], [7]. The value of each term is obtained as
equation 2, where {0, xi

in}
Nic
i=1, {tibcxi

bc}
Nbc
i=1 and {tirxi

r}
Nr
i=1 represents respectively the set of points

sampled in the initial condition, boundary condition and the collocation points, where the residual

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 11, n. 1, 2025.

DOI: 10.5540/03.2025.011.01.0343 010343-2 © 2025 SBMAC

http://dx.doi.org/10.5540/03.2025.011.01.0343


3

of the differential equation is calculated, each containing Nic,Nbc and Nr points respectively. For
simplicity, x represents all the dimensions of the spatial domain, and t is the time domain.

L(θ) =
1

Nic

Nic∑
i=1

(I(xi
ic, uθ(0, x

i
ic)))

2 +
1

Nbc

Nbc∑
i=1

(B(tibc, x
i
bc, uθ(t

i
bc, x

i
bc)))

2 +
1

Nr

Nr∑
i=1

(F (tir, x
i
r, uθ(t

i
r, x

i
r)))

2

(2)

The process of approximating the solution to the PDE is reduced to an optimization problem,
where the initial and boundary conditions and the differential equation’s residual can be seen as
constraints.

Backpropagation is used to update neural network parameters during training; it calculates
gradients of the loss function concerning the network parameters. A more general form of Auto-
matic Differentiation in reverse mode also calculates the derivatives of the network output with
respect to its inputs to obtain the residual of the differential equation. This approach ensures that
physical knowledge is incorporated into the network, and it learns the underlying physics of the
problem.

3 Methodology
A possible approach to understanding the error in the approximations to solutions is to divide

it into three components, as illustrated in Figure 1. The objective is to examine the influence of
estimation and approximation errors independently.

The estimation error is intrinsic to any approximation of a function defined in the continuous
domain through a finite amount of data. The influence of this portion was analyzed using different
discretizations with regular spacing to train the same neural network (same architecture and initial
parameters) and obtain approximations in predefined points. The objective is to independently
verify the influence of a finer discretization in each domain on the generalization capacity of the
network.

Figure 1: Illustration of the total errors from [8].

The approximation error aims to measure the expressiveness of the neural network used to
solve the problem. This influence was analyzed using different architectural parameters of the
network and verify their influence. The parameters tested were the number of neurons in the
hidden layer and the number of hidden layers. Each modification was made independently, and
the error was obtained by averaging five models compiled with initial parameters drawn from the
same distribution to mitigate the randomness of parameter initialization.

PINN can generate an approximation of the solution at any point in the domain, regardless
of whether this point was used to train the network. However, to compare approximations under
similar conditions, the discretizations used in implementing the finite difference methods were also
used to train the network and generate the solutions.

All applications of PINN were made in a TensorFlow environment [9]. Two finite difference
methods were chosen to compare the results obtained with PINN: the forward time-centered space
method (FTCS) and the alternating-direction implicit (ADI) methods [10], [11].

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 11, n. 1, 2025.

DOI: 10.5540/03.2025.011.01.0343 010343-3 © 2025 SBMAC

http://dx.doi.org/10.5540/03.2025.011.01.0343


4

4 Computational Simulations

4.1 Discretization Influence

The network used in all discretizations consisted of ten densely connected hidden layers with
thirty neurons each; the activation function used was the Gaussian Error Linear Unit (GELU)
[12], trained with the Adam optimizer for 5000 epochs. For this problem, the input layer had three
dimensions, two for space and one for time, and the output layer had one dimension. This network
had a total of 2941 trainable parameters.

The results of the experiments can be seen in Figure 2, where each point represents a particular
discretization. The x-axis shows the total number of points in the discretization, and the y-axis
shows the relative L2 norm of the approximation with the analytical solution, both on a logarithmic
scale. The relative L2 norm was calculated using the solution obtained with fifteen points in each
space domain and fifty in the time domain for a total of eleven thousand two hundred and fifty
points. The values provided by the networks were then compared with the analytical solution
on the same points. The blue and orange lines represent the time and spatial domain refinement
experiment, respectively, and the green line for both domains simultaneously. We can see that the
relative L2 error tends to converge for all situations.

Figure 2: The orange line is refining the space domain, the blue line the time domain, and the
green line both. Each experiment has a total of 27 different discretizations. Source: from the
authors.

4.2 Network Architecture Influence

To discover the best architecture for the network used to approximate the solution, a multilayer
perceptron with the Gaussian Error Linear Unit (GELU) [12] as its activation functions was initially
used. For the test aimed at finding the optimal number of neurons in the hidden layers, the number
of hidden layers was initially fixed at four, and the number of neurons in these layers was varied;
this initial parameter was chosen since it would provide the network with enough expressibility
while not making the training impractical. It is possible to see the results in Figure 3a.

The second test, aiming to discover the impact of the number of hidden layers, was performed
with a fixed number of thirty neurons in each hidden layer while varying the number of layers.
The results are displayed in the Figure 3b.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 11, n. 1, 2025.

DOI: 10.5540/03.2025.011.01.0343 010343-4 © 2025 SBMAC

http://dx.doi.org/10.5540/03.2025.011.01.0343


5

(a) Experiment where the number of neurons
in the hidden layer was varied from 1 to 100
neurons in the hidden layers, adding 5 each time.

(b) Experiment where the number of hidden lay-
ers of the network was varied from varied from
1 to 16, adding 1 at a time.

Figure 3: Experiments varying the number of trainable parameters in the networks by indepen-
dently adding neurons in the hidden layers and adding hidden layers. Source: from the authors

4.3 Approximate Solution Visualization
Figure 4 shows the approximations of the network after some training epochs for the specific

time steps 0.05 second. The displayed approximations were produced after 0, 50, 100, and 1000.The
presented solutions were obtained from a grid with 50 points in each dimension of the space domain
and 25 points in the time domain.

(a) 0 epochs. (b) 50 epochs. (c) 100 epochs. (d) 1000 epochs.

Figure 4: Solutions obtained during the training process of physics-informed neural networks at
the time 0.05 seconds after 0, 50, 100 and 1000 epochs. Source: from the authors.

The network was composed of four hidden layers with forty neurons each, totaling 2941 trainable
parameters, each with GELU as an activation function. The network was trained for 5000 epochs
with a learning rate of 10−2 to 1000 epochs, 10−3 from 1000 to 3000 epochs, and 5.10−4 from 3000
to 5000 epochs.

4.4 Comparative Tests
Two finite difference methods were chosen to compare the results obtained with PINN: one

explicit with the Forward Time-Centered Space method (FTCS) and one implicit using the Al-
ternating Direction Implicit (ADI) method [10], [11]. The FTCS method has to obey a condition
related to the step size in each dimension to produce a solution; the ADI method, on the other

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 11, n. 1, 2025.

DOI: 10.5540/03.2025.011.01.0343 010343-5 © 2025 SBMAC

http://dx.doi.org/10.5540/03.2025.011.01.0343


6

hand, is made in such a way as to be able to produce a solution regardless of the chosen steps [11].
The discretizations used in implementing the finite difference methods were also used to train and
evaluate the network. All experiments are displayed in Figures 5a and 5b.

(a) The time domain was fixed at 10 points while
both dimensions of the space domain ranged
from 3 points to 25, adding 1 point, and then
from 25 points to 50, adding 5 points each time.

(b) Both dimensions of the spatial domain were
fixed with 10 points, while the time domain var-
ied from 3 points to 25, adding 1 point, and after
25 points to 50, adding 5 points each time.

Figure 5: Each plot relates the number of points to the L2 relative norm, axes in logarithmic scale.
Each point is a distinct discretization, totaling 27 different discretizations in each experiment.
Source: from the authors

5 Conclusions

It can be suggested that a minimum number of points is required to accurately represent a
domain when addressing estimation errors. However, beyond a certain threshold, the solution’s
approximation does not significantly improve.

Wider neural networks pose less significant training challenges. Increasing neurons produces
relatively closer approximations. However, there is a limit at which approximations stop improving,
suggesting an ideal number of neurons exists.

Increasing the hidden layers in neural networks can make training more challenging. The
ideal number of hidden layers incorporates the complexity of the solution without encountering
difficulties in the training process.

PINN outperformed the two finite difference methods in almost all scenarios. While ADI solved
all cases, it could not match the performance of the PINN approximations as the FTCS method
had strict convergence constraints.

Visualizing the training process shows that PINN approximates the PDE solution at all points
simultaneously, giving it an advantage. Unlike FDM, PINN does not propagate errors from previous
time steps to the next ones, which makes it more stable. The independence of the approximate
solutions at each time step gives PINN a unique advantage in terms of stability, which results in
better performance in the two-dimensional problem where error propagation plays a crucial role.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 11, n. 1, 2025.

DOI: 10.5540/03.2025.011.01.0343 010343-6 © 2025 SBMAC

http://dx.doi.org/10.5540/03.2025.011.01.0343


7

Acknowledgment
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível

Superior – Brasil (CAPES) – Finance Code 001

References
[1] I. E. Lagaris, A. Likas, and D. I. Fotiadis, “Artificial neural networks for solving ordinary

and partial differential equations,” IEEE transactions on neural networks, vol. 9, no. 5,
pp. 987–1000, 1998. doi: 10.1109/72.712178.

[2] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial dif-
ferential equations,” Journal of Computational physics, vol. 378, pp. 686–707, 2019. doi:
10.1007/s10915-022-01939-z.

[3] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, “Automatic differentiation
in machine learning: A survey,” Journal of Marchine Learning Research, vol. 18, pp. 1–
43, 2018. [Online]. Available: http://jmlr.org/papers/v18/17-468.html.

[4] V. Souza, “Convergence analysis of physics-informed neural networks and comparison with
finite difference methods,” Master dissertation, UERJ, 2024.

[5] V. Souza, C. Faria, and K. Leite, “Pinn convergence with regular discretizations and com-
parison with fdm,” in Anais do Encontro Nacional de Modelagem Computacional
e Encontro de Ciência e Tecnologia dos Materiais, 2023. [Online]. Available: https:
//www.even3.com.br/anais/xxvi-encontro-nacional-de-modelagem-computacional-
xiv- encontro- de- ciencia- e- tecnologia- dos- materiais- 338941/705486- pinn-
convergence-with-regular-discretizations-and-comparison-with-fdm/.

[6] Z. Hao, S. Liu, Y. Zhang, C. Ying, Y. Feng, H. Su, and J. Zhu, “Physics-informed machine
learning: A survey on problems, methods and applications,” arXiv preprint:2211.08064,
2022.

[7] M. A. Nabian, R. J. Gladstone, and H. Meidani, “Efficient training of physics-informed
neural networks via importance sampling,” Computer-Aided Civil and Infrastructure
Engineering, vol. 36, no. 8, pp. 962–977, 2021. doi: 10.1111/mice.12685.

[8] Y. Shin, J. Darbon, and G. E. Karniadakis, “On the convergence of physics informed neural
networks for linear second-order elliptic and parabolic type pdes,” Communications in
Computational Physics, vol. 28, no. 5, pp. 2042–2074, 2020. doi: 10.4208/cicp.OA-
2020-0193.

[9] M. A. et al, TensorFlow: Large-scale machine learning on heterogeneous systems,
Software available from tensorflow.org, 2015. [Online]. Available: https://www.tensorflow.
org/.

[10] K. A. Hoffmann and S. T. Chiang, Computational Fluid Dynamics Volume 1. Engi-
neering Education System, 1998, isbn: 978-0962373107.

[11] R. J. LeVeque, Finite difference methods for ordinary and partial differential equa-
tions: steady-state and time-dependent problems. SIAM, 2007, isbn: 978-0898716290.

[12] D. Hendrycks and K. Gimpel, “Gaussian error linear units (GELUs),” arXiv preprint:
1606.08415, 2016.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 11, n. 1, 2025.

DOI: 10.5540/03.2025.011.01.0343 010343-7 © 2025 SBMAC

http://dx.doi.org/10.5540/03.2025.011.01.0343

