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The Firefighter Game in Fullerene Graphs
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Abstract. In 1995, Hartnell introduced the Firefighter game with an input graph G = (V,E).
Initially, every vertex of V is labelled non-burned. The game consists of a fire starting at vertex
v ∈ V switching the label of v to burned. While there are non-burned vertices adjacent to burned
vertices (the fire is still spreading), a non-burned vertex u is chosen to be defended, setting the label
of u to defended. At each new step, the fire spreads from each burned vertex v to every non-burned
adjacent vertices to v, which labels are set to burned. The game ends when the fire is no longer
able to spread. We want to defend as many vertices as possible. Let sn(G, v) be the maximum
number of vertices that can be defended when a fire starts from a vertex v ∈ V . The surviving
rate ρ(G) = 1

|V |2
∑

v∈V sn(G, v) is the average percentage of vertices that can be defended when a
fire starts from a vertex v of V . In this work, we apply a Firefighter game to fullerene graphs. We
established ρ(G), when G is the full icosahedral symmetry fullerene graph G2,0.
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1 Introduction
A graph G is a ordered pair (V,E) consisting of a set V of vertices and a set E, disjoint from V ,

of edges, together with a incidence function φG that associates with each edge of G an unordered
pair of (not necessarily distinct) vertices of G. If e is an edge and u and v are vertices such that
φG(e) = {u, v}, vertices u and v are called the ends of e, and we say that these vertices are
adjacent [2].

In 1995, Hartnell introduced the Firefighter game in graphs, which consists of a fire starting at
one non-burned vertex of a graph and then a non-burned vertex is chosen to be defended. After
the first defense, the Step 1 is complete (the other steps follows the same). At each new step, the
fire spreads from each burned vertex to all adjacent vertices that were not defended in the previous
steps and, again, one vertex can be defended by firefighters, until the fire stops spreading [5]. The
fire cannot burn or cross a defended vertex. We want to defend as many vertices as possible. In
figures that we illustrate Firefighter strategies, red vertices represent the burned vertices and label
bk, k ≥ 1, indicates the step at which the fire reached the respective vertex. Similarly, blue vertices
represent the defended vertices and label dk, k ≥ 1, indicates the defense step. When the fire has
just spread, black vertices represent indirectly defended vertices as the fire was contained. Figure 1
presents each step of an optimal strategy of Firefighter game on graph C5.

Let sn(G, v) denote the maximum number of vertices that can be defended when the fire starts
at vertex v of graph G. The surviving rate ρ(G) = 1

|V |2
∑

v∈V sn(G, v) is the average percentage
of vertices that can be defended when a fire starts from a vertex v of V [3]. Note that in Figure 1,
no matter where the fire starts, in an optimal strategy it is always possible to defend 3 vertices.
Therefore, the survival rate of this graph is ρ(C5) =

3+3+3+3+3
52 = 60%.
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(a) (b) (c) (d)

Figure 1: The 4 stages of Step 1 of Firefighter game on graph C5, with an optimal strategy to
defend 60% of it. In (a), the first burned vertex. In (b), the first defended vertex, when the first
step is complete. In (c), the fire spreads to all adjacent vertices. In (d), the second defended vertex,
when the second step is complete, and the fire can no longer spread. We have 3 of the 5 vertices
defended. Source: From the authors.

One of the motivation of this game is the following. Suppose that some village of houses
are represented by graphs. The houses are represented by the vertices and, if two houses are
neighbors, the corresponding vertices have an edge connecting them. So, we fight fires in some
village of houses trying to defend a maximum number of houses, saving the maximum number
of houses that our strategy allows. This context seems to be appropriate when applied to large
networks, where we can act and make decisions based on our own interests, as at each step of the
game the player decides where to place a new firefighter on a non-burned vertex of the graph. By
making this choice, the player is indirectly deciding which vertices can be set on fire in the next
step, and consequently, which ones can be defended next. Our village of houses is represented by
members of the class of fullerene graphs. In Figure 2, an example of a village of houses and your
representation by a vertex labeled graph.

(a) (b)

Figure 2: In (a), a village of houses. In, (b) the representation by a graph with labeled vertices.
In this case the surviving rate is given by ρ(G) = (5+4+4+4+4+5+5)

72 = 31
49 ≈ 63%. Source: From the

authors.

In this work, we present computational results of the game applied to the smallest fullerene
graphs, and introduce two strategies of the Firefighter game applied to the first two members of
a full icosahedral symmetry fullerene family. We conclude this work by presenting a partial result
on the third graph of this family.
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2 Fullerene Graphs

The fullerene graphs are mathematical models of molecules allotropic to diamonds, composed
only of carbon atoms containing 12 pentagonal faces and a non-specific number of hexagonal
faces [1]. An important property of fullerene graphs is that they are planar graphs, that is, they
have a representation on the plane so that the edges do not intersect, and therefore they resemble
a village. These graphs are 3-connected, cubic, and planar.

The main result of this paper is to fight fires on the full icosahedral symmetry fullerene graph
G2,0, a graph of family Gi,0, i ≥ 2, introduced by Andova and Škrekovski [1]. The first graph of
this family G1,0 is presented in Figure 6. In these graphs, the centers of the pentagonal faces form
an icosahedron, based on the construction of its 20 triangular faces with the Goldberg vector in an
hexagonal grid, a plane composed only of hexagonal faces. To illustrate the icosahedral symmetry
fullerene graph G1,4 and your construction, we refer to Figure 3.

(a) (b)

Figure 3: In (a), the colored parts that will form the 12 pentagons of the solid with icosahedral
symmetry generated by the vector G⃗ = (1, 4), and in (b) the solid with icosahedral symmetry
generated by the vector G⃗ = (1, 4). On the surface of this solid, the icosahedral symmetry fullerene
graph G1,4 is defined [6]. Source: From the authors.

2.1 Computational Results on the Smallest Fullerene Graphs

With the help of the computer, we were able to simulate the game by analyzing all possible
strategies, in order to find the maximum number of vertices defended in a given graph, with the
fire starting at a random vertex. The program works as follows: we enter the number of vertices
and edges in the graph, along with the adjacencies between the vertices. The program will scan the
entire graph, analyzing what happens with each choice of initial vertex set on fire and with each
defense successively, since as previously stated, at each step the player is indirectly deciding which
vertices can be set on fire and defended in the next step. Thus, once the first vertex to be defended
is chosen, the fire spreads and all possibilities of vertices that can be defended in the following
steps will be analyzed. However, with each new choice, countless possibilities immediately arise,
and these will also be calculated. After all possible scenarios, the program will make a new choice
for the first defense, and consequently, all defense possibilities in the following steps. Then the
program will carry out this entire analysis with a new vertex as first burned vertex, until all vertices
are analyzed.

It is not difficult to see that in a graph with a large number of vertices the process becomes
quite time-consuming. To illustrate, in Figure 4, we run the program at the three smallest fullerene
graphs C20, C24, and C26, and note that the first burned vertex influences the number of vertices
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that can be defended (represented in parentheses) at the end of the game. We remark that in the
subsequent fullerene graphs from graph C26, the vertices initially set on fire start to influence the
maximum number of defended vertices.

(a) C20 (b) C24 (c) C26

Figure 4: Fullerene graphs C20, C24 and C26 with their respective numbers of vertices that can be
defended from each vertex as the first burned vertex. Regarding graph C26, with the majority of
vertices being the first burned vertex, it is possible with an optimal strategy to defend 14 of the
26 vertices. But in two vertices as the first burned vertex, this number drops to 12. Source: From
the authors.

3 Hexagonal Grid Strategy

Our strategy to defend fullerene graphs is based on the study of Firefighter on the infinite
hexagonal grid, an infinite graph with exclusively hexagonal faces. Note that this grid is very
similar to fullerene graphs, due to its planar with hexagonal faces, with the difference that it does
not contain the 12 pentagonal faces in a fullerene graph. In this strategy, the infinite hexagonal
grid is divided into 3 equal parts (3 blue axes). The defended vertices are on two of the three
axes, on the right and on the left, and thus the fire is maintained on 1/3 of the grid, while 2/3
are defended. But this strategy cannot stop de spread of the fire, because the grid is infinite. The
complete strategy can be seen in [4]. In Figure 5, we present an illustration of part of this strategy
on the infinite hexagonal grid, saving 2/3 of it.

Figure 5: Our strategy in the hexagonal grid. The fire is maintained on 1/3 of the grid. Source:
From the authors.
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Applying this same strategy to the smallest fullerene graph G1,0, we do not obtain an optimal
result, as we were able to verify what this result would be with the help of the computer.

The following algorithm gives the optimal result and an application of it can be seen in Figure 6:
after sppliting the set of vertices of the graph into levels Ci, i ≥ 1, the first defense must be a vertex
from C1. Defenses 2, 3 and 4 respect the condition dist(c2, d1) = dist(c3, d2) = dist(c3, d1) = 2,
respectively. The last defense will be the vertex with distance equal to the diameter from the
first burned vertex. Thus, the surviving rate of this graph is 45%, a possible lower bound for
the surviving rate of all fullerene graphs, as this one is the smallest of them. In this context, we
propose the following conjecture.

Figure 6: Application of the algorithm that gives the optimal result for graph G1,0. Source: From
the authors.

Conjecture 3.1. Every fullerene graph has a surviving rate of at least 45%.

3.1 Hexagonal Grid Strategy on Fullerene Graph G2,0

The use of computational assistance on graph G2,0 (Figure 7) had a very large computational
cost, due to its high number of vertices. So let us analyze two cases: when the first burned vertex
is a pentagonal vertex (a vertex that belongs to at least one pentagonal face) and when the first
burned vertex is an exclusively hexagonal vertex (a vertex that belongs only to hexagonal faces).
Each graph Gi,0 of the family contains 20i2 vertices, so in G2,0 we have 80 vertices. In this graph,
all exclusively hexagonal vertices have distance 1 from the nearest pentagonal vertex.

In Figure 7, we have the application of the infinite hexagonal grid strategy in the graph G2,0, in
the two cases we are considering: the fire starting at a vertex belonging to a pentagonal vertex and
the case in that the fire starts at an exclusively hexagonal vertex. Note that when applying this
strategy in the case where the fire starts at an hexagonal vertex, we obtain 43 defended vertices.
In the case where the fire starts at a pentagonal vertex, we obtain 54 defended vertices. As the
graph G2,0 has 60 pentagonal vertices and 20 exclusively hexagonal vertices, we can then, using
this strategy, calculate its survival rate, which is ρ(G2,0) ≥ (60·54)+(20·42)

802 ≈ 64%.
When the fire starts at a pentagonal vertex, we analyze the number of burned vertices at each

step on G2,0 and on G3,0 (Figure 8), and it is possible to see a pattern. Thus, in this case, we are
able to predict the number of vertices defended in any graph Gi,0, thus having an upper bound
for the number of vertices defended in the entire family. With this strategy, the number of burned
vertices of Gi,0 in step i can be found in Equation 1, and the number of defended vertices of Gi,0
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in step i can be found in Equation 2. Note that for i sufficiently large, the number of defended
vertices is no more than 90%.

4

i+1∑
n=3

i+ 2(i+ 5) = 2i2 + 8i+ 2 (1)

ρ(Gi,0) ≥
20i2 − (2i2 + 8i+ 2)

20i2
=

9

10
− 2

5i
− 1

10i2
, i ≥ 2· (2)

(a) (b)

Figure 7: Strategy that defends 64% of fullerene graph G2,0: In (a), the first burned vertex is a
pentagonal vertex, returning a surviving rate of 67, 5% (54 defended vertices). In (b), the first
burned vertex is an hexagonal vertex, returning a surviving rate of 53% (42 defended vertices).
Therefore, the surviving rate is ρ(G2,0) ≥ (60·54)+(20·42)

802 ≈ 64%. Note that when first burned vertex
is a pentagonal vertex, we defend a large number of vertices. The analysis of this observation will
be investigated in the future. Source: From the authors.

4 Future Works

We did a brief analysis of Firefighter in the next graph of this family, G3,0, when the fire starts
at a pentagonal vertex. Observing the number of vertices defended, from this first burned vertex,
we see that this number tends to grow as the family grows. In the case of G3,0, which has 180
vertices, applying the same strategy as the hexagonal grid we managed to defend 136 vertices.
Part of this ongoing work is to analyze the cases of fire starts in hexagonal vertices, of which we
have two types: hexagonal vertices with distance 1 and distance 2 to a nearest pentagonal vertex.

As the construction of these graphs is done respecting the distance between the 12 pentagons
according to the index i, an interesting fact is that, with the first burned vertex being a pentagonal
vertex, we observed a pattern of vertices on fire in both of G2,0 and G3,0, and we established the
number of burned vertices in any Gi,0, and thus also the number of vertices defended.

We will investigate whether there is also a regularization of the number of burned vertices,
applying this strategy when the first burned vertex is an exclusively hexagonal vertex, thus estab-
lishing the number of defended vertices in the entire family regardless of where the fire starts.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 11, n. 1, 2025.

DOI: 10.5540/03.2025.011.01.0488 010488-6 © 2025 SBMAC

http://dx.doi.org/10.5540/03.2025.011.01.0488


7

In Figure 8, we have the strategy on G3,0 with a first burned vertex being a pentagonal vertex.
Note that the proportion of defended vertices (75, 5%) increases in relation to G2,0 (67, 5%, in
Figure 7a), and we believe that in each subsequent graph of this family, a greater number of
defended vertices is reached. And of course, in the future we will also analyze the strategy when
the first burned vertex is a exclusively hexagonal vertex, trying to find a pattern for this case as
well.

Figure 8: The same strategy applied on G3,0, saving 75, 5% of the vertices, with a first burned
vertex being a pentagonal vertex. Source: From the authors.
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