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Astract. This study explores spatial continuity using Wendland’s covariance functions in geosta-
tistical modeling. Wendland’s covariance family, defined within a compact support, offers flexibility
with a smoothing parameter, competing with the well-known Matérn family. Expressions for co-
variance functions and a spatial dependency index are provided, along with sensitivity analysis
using local influential diagnostics. Jackknife-after-Bootstrap resamples establish reference levels for
potential influence detection. An application to soybean yield data validates the methodology.
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1 Introduction
Several works have contributed to the development of positive definite radial functions with

compact support, laying the foundation for spatial modeling. [13] introduced a class of such
functions and established criteria for their positivity. [12] demonstrated the suitability of certain
piecewise polynomial functions as positive definite radial functions with compact support. Building
upon these concepts, [7] investigated correlation functions governing the smoothness of associated
random fields, offering a computationally efficient approach for spatial prediction. [3] showed the
uniform convergence of Wendland’s functions to Gaussian covariance functions under appropri-
ate variable rescheduling. Generalizations of radial-based functions, termed generalized Wendland
functions, were studied by [2], with [1] focusing on their application in Gaussian random field
estimation and prediction. The Wendland covariance family, characterized by its compact sup-
port within the interval (0, 1], offers flexibility through a varying smoothing parameter, making
it a competitor to the Matérn family. Despite Matérn’s limitations in handling large distances,
Wendland-type functions demonstrate advantages in generating sparse covariance matrices, partic-
ularly beneficial in high-dimensional datasets. Like other statistical models, spatial models require
validation, prompting the focus of this study on influential diagnostic analysis within Gaussian
spatial linear models employing the Wendland covariance structure. Specifically, local influence
methodology proposed by [4] is explored, with the Jackknife-after-Bootstrap technique used to de-
termine influential levels. The paper aims to assess the performance of Wendland family covariance
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functions in diagnosing local influence within linear spatial Gaussian models, supplemented by a
novel spatial index.

2 Wendland’s Covariance Family Functions

The Wendland covariance family makes up a class of positive defined functions with the domain
in a compact support, which were introduced by [13], and subsequently unfolded by [12]. Its
domain is restricted to the interval (0, 1], defined from the distances between two points. For the
present study, the Euclidean distance between two distinct spatial locations was considered, i.e.,
si, and si+h, where i = 1, · · · , n, with h = ∥(si + h)− si∥, belonging to the d−dimensional space
R2(d = 2).

Let us consider a stationary covariance function C : R2 −→ R [7], [1] for an Φ2 family of
continuous mappings f : [0,∞) −→ R , with (1):

cov(Z(s), Z(s+ h)) = C ((s+ h)− s) = f ∥(s+ h)− s∥ , (1)

where ∥·∥ is the Euclidean norm and Z = {Z(s) : s ∈ S ⊂ R2} is a stochastic process. That said,
us let consider the covariance functions of the Generalized type of Wendland (GW) similar to the
one defined in [1] by

Cµ,κ(h) =


1

B(2κ, µ+ 1)

∫ 1

h
x
(
x2 − h2

)κ−1
(1− x)µdx, if 0 ≤ h ≤ 1

0, if h > 1,
(2)

where B(·) denotes the Beta function, h is the Euclidean distance, and the smoothing parameter
is κ ∈ Z+. The parameter µ characterizes the concavity of the correlation curve, and in Equation
(3), it is possible to define the positivity of the generated covariance matrix.

µ ≥ d+ 1

2
+ κ, with d = 2. (3)

[7] and [14] presented these arguments to show that (2) belongs to the class of positive defined
functions, in a d-dimensional space if, and only if (3) is satisfied.

2.1 Practical Range and Spatial Dependency Index for Generalized Wend-
land Covariance Family

As the literature suggests, if ρ(h) = 0 for a distance h greater than a finite real number, a > 0,
then the interval (0, a] is called the spatial correlation interval. In general, the correlation function,
ρ(h), assumes a null value only asymptotically, and in this case, the spatial correlation interval is
undefined. According to [6], it is common to adopt the conversion ρ(a) = 0.05. In other words,
γ(a) = ϕ1 + 0.95ϕ2 to determine the practical range.

The relationship between the practical range and the ϕ3 parameter for the GW covariance
function with smoothing parameters κ = 0, 1, 2, and 3 is a = 0.776ϕ3, a = 0.657ϕ3, a = 0.573ϕ3,
and a = 0.514ϕ3, with µ = 2, 3, 4 and 5, respectively.

Known spatial dependency indices in the literature, use only the parameters ϕ1 and ϕ2 of the
semivariance function. According to [11], this is a weakness of the method, given that in such
case the aspects of the semivariogram geometry are not considered, which can lead the researcher
to erroneous conclusions. Considering this, [11] proposed a new measure of spatial dependence,
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called the Spatial Dependency Index (SDI), which takes into account all information inherent to
the semivariance function. This new index is calculated by the following:

SDI(%) = MF ×

(
ϕ̂2

ϕ̂1 + ϕ̂2

)
×
(

a

q.MD

)
× 100, (4)

where MF is a factor that measures the strength of the model’s spatial dependence. The higher its
value is, greater the spatial dependence of the model. The value of MF is obtained by calculating
the spatial continuity area of the model. [11] defined the term q.MD as the fraction (q) resulting
from the maximum distance (MD) between the sampled points. The fraction a

q.MD must be
between zero and 1 and in the event of obtaining a value of greater than 1, its value is fixed at 1.

Given the relation in Equation (5), [11] calculated the “Spatial Continuity Area (SCA),” given
in Equation (6) for the Spherical, Exponential and Gaussian models, obtaining of values 0.375,
0.317, and 0.50 for model factor (MF), respectively . Subsequently, based on the median and third
quartile, [10] proposed interval categories of spatial dependence based on the values obtained by
SDI, defining categories of spatial variability.

ρ(h) = 1− γ(h)

C(0)
, (5)

where C(0) > 0 is equivalent to the total sill ϕ1+ϕ2, ρ(h) indicates the spatial correlation function,
and γ(h) indicates the theoretical model that defines the semivariance function. Then, SCAκ is
calculated by the following:

SCAκ =

∫ a

0

(
1− γ(h)

ϕ1 + ϕ2

)
dh. (6)

This study obtained the SCA for the GW covariance family, SCA0 =
ϕ2

ϕ1 + ϕ2
× a × 0.425,

SCA1 =
ϕ2

ϕ1 + ϕ2
× a × 0.502, SCA2 =

ϕ2

ϕ1 + ϕ2
× a × 0.511, and SCA3 =

ϕ2

ϕ1 + ϕ2
× a × 0.512

for the smoothing parameters κ = 0, 1, 2, and 3, respectively. The factors of the model (MF) are
equal to MF0 = 0.425, MF1 = 0.502, MF2 = 0.511, and MF3 = 0.512. Details are given in [9].

2.2 Gaussian Spatial Linear Model

Let us consider an intrinsically stationary stochastic process Z = {Z(si) : si ∈ S ⊂ Rd, d = 2}.
Let Z be an n× 1 random vector, Z = (Z(s1), · · · , Z(sn))

⊤, with Z(si) defining the observations
of the stochastic process in different locations si, i = 1, · · · , n. According to [5] and [8], the
observations of the process are generated by a linear spatial model defined as follows:

Z(si) = µ(si) + ϵ(si), (7)

where µ(si) denotes the component of the fixed effects of the process, that is, the a deterministic
term. The term ϵ(si) indicates the error of the process, that is, the stochastic part in which we
assume to have zero mean, E(ϵ(si)) = 0, and finite variance determined by a covariance function
Cov(ϵ(si), ϵ(si+h)) = C(si, si+h), i, · · · , n, with h indicating the Euclidean distance between two
locations. It was assumed that the covariance function C(si, si + h) is specified by a parameter
vector ϕ = (ϕ1, · · · , ϕ3)

⊤.
Furthermore, according to [5], given a set {xj(si), j = 1, · · · p, i = 1, · · ·n} of explanatory

variables, the mean of the stochastic process is defined by (8).
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µ(si) =

p∑
j=1

xj(si)βj , (8)

where β′
js indicates the jth unknown parameter to be estimated. In view of this, we define a vector

β = (β1, · · · , βp)
⊤, one design matrix, X, on the order n×p with (i, j) entries defined by xj(si), j =

1, · · · , p, i = 1, · · · , n, that is, the ith line is composed by the vector x⊤
i = (x1(si), · · · , xp(si)), and

ϵ = (ϵ(s1), · · · , ϵ(sn)) is the stochastic error vector. Then, the spatial linear model defined in (7)
can be rewritten in the following matrix form (9):

Z = Xβ + ϵ, (9)

where Xβ is the mean process defined in (8). Then, E(ϵ) = 0 and the covariance matrix for ϵ is
denoted by Σ = [σij ], where σij = C(si, sj). It is assumed that Σ is non-singular and that X is a
full-rank column.

3 Application to Soybean Yield Data
In this section, the methodology studied in this paper will be illustrated using a set of 74

observations of soybean yield in [t × ha−1] (ton per hectare), harvested in 2016/2017, collected
from an experimental field of the Space Statistics Laboratory of Universidade Estadual do Oeste
do Paraná, campus Cascavel, in a commercial area of 127.18 ha of grain production, located near
the municipality of Cascavel, in the Western region of Paraná, with geographic coordinates are
approximately 24.95 S e 53.57 W , and with a mean altitude of 650 m.

The Table 1 shows the parameters estimated using the ML for the model selected by cross-
validation at κ = 3. The standard asymptotic errors are in parenthesis. The ϕ3 parameter was
fixed at 1.730, obtained by the least squares estimation method. In this case, as mentioned in
Subsection 2.1, the practical range is a = 0.514 × ϕ3 = 0.889 km. The method of ordinary least
squares was used to obtain the value of parameter ϕ3 to be considered as fixed, and the initial
values of ϕ1 and ϕ2, which helped to overcome the problem found with the singularity of the
covariance matrix generated from these data. That said, as mentioned in Section 2.2, we consider

the parametric form Σ = τ1I+ τ2R(ϕ3), with τ1 = ϕ1, and τ2 =
ϕ2

ϕ2κ+1
3

.

Table 1: Parameters estimated by ML method for covariance family of Generalized Wendland for variable
response of soybean yield in (t × ha−1) in the agricultural year of 2016/2017, with smoothing parameter
κ = 3 , and fixed ϕ3.

Family Intercept P K Ca Mg Nugget Sill SDI(%)

β̂0 β̂1 β̂2 β̂3 β̂4 τ̂1 τ̂2

GW 2.759 0.004 0.331 -0.001 0.107 0.246 0.049 8.534
(0.364 ) (0.006) (0.584) (0.010) (0.099) (0.055) (0.043) −−−−

P: phophorus, K: potassium, Ca: calcium, Mg: magnesium, SDI: Spatial Dependency Index.
With κ = 3 and FM = 0.512 (Model factor). Standard deviations are presented in parentheses.

To identify the cutoff point, the jackknife-after-bootstrap method was used, from 1000 resamples
of the variable soybean yield. We obtained a percentile range of 95% equal to (0.062, 0.436), with
the quantile 0.436 being used as the cutoff point of the dataset. The potentially influential points are
#39,#52,#61, and #64, corresponding to the values of 2.927, 3.511, 3.543, and 3.400 (t× ha−1),
respectively; see Figure 1.
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Figure 1: Local influence of maximum normal curvature. The cutoff line (horizontal dotted line) corre-
sponds to the 95% quantile of the bootstrap distribution generated by the nBe−1 values, with B = 1000

Jackknife-after-Bootstrap technique samples. Source: Of the authors.

Regarding the spatial dependence structure, note that the changes were more decisive when
considering that parameter τ2 declined by almost half. This component seems to cause serious
problems in terms of measuring the spatial dependence of the data.

When observations #52, #61, and #64 were removed together or individually, it only changes
the sign of the estimated parameter β3, and the influence of the explanatory variable Ca on
the variable response. However, the spatial structure estimates an increase for the parameter τ1
and a decreased to τ2, highlighting the strictly inverse behavior in the individual removal of the
#52 observation. Thus, in fact, this observation influences the structure that models the spatial
dependence. Note that the asymptotic standard errors for the component that defines the spatial
structure were increased only when excluding observation #52.

A positive relative variation (
9.147− 8.534

8.534
× 100 = 7.183) can be observed for the spatial

dependency index, when observation #52 is removed. The influence of these observations on the
construction of the maps was also verified; see Figures 2 and 3.

The predicted values were obtained using a universal kriging. Note that changes in the maps
obtaining when the observations were removed in all scenarios, where it is more noticeable when
observation #52 is excluded, as shown in Figure 3(b).
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Figure 2: Maps for the predicted values of soybean yield by (t×ha−1) in the 2016/2017 crop for Wendland’s
covariance function with κ = 3: (a) with all observations and (b) without observations #39, #52, #61,
and #64. Source: Of the authors.
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Figure 3: Maps for the predicted values of soybean yield by (t × ha−1) in the crop of 2016/2017 for
Wendland’s covariance function with κ = 3: (a) without the presence of observations #52, #61 and #64,
and (b) individually without the observation #52. Source: Of the authors.

4 Final Considerations

The results of this study were extended to measures of local influence with a spatial covariance
matrix for covariance matrices belonging to the Wendland family. Its flexibility through a smooth-
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ing parameter placeds it as a strong competitor to the Matérn covariance family. As a consequence,
the results of the data sets with one soybean yield showed that it is possible to detect influential
observations. These conclusions are based on the analysis of the asymptotic standard errors, con-
sidering the individually influential observations or their sets as an alternative to considering their
joint effect.
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