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Abstract. A k-total coloring of G is an assignment of k colors to its elements (vertices and edges)
such that adjacent or incident elements have distinct colors. The total chromatic number is the
smallest integer k for which the graph G has a k-total coloring. If the total chromatic number is
∆(G)+1, then G is called Type 1. The line graph of G, denoted by L(G), is the graph whose vertex
set is the edge set of G and two vertices of the line graph of G are adjacent if the corresponding
edges are adjacent in G. In this paper, we prove that every line graph of the generalized Petersen
graph is conformable; the graph L(G(n, 1)), for n ≥ 3, is Type 1 ; and, if L(G(n, k)) is Type 1, then
L(G(n′, k′)) is Type 1, for all n′ ≡ 0 mod n and k′ ≡ k mod n.
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1 Introduction

Let G = (V,E) be a simple connected graph. A k-vertex coloring of G is an assignment of k
colors to the vertices of G so that adjacent vertices have different colors. A k-edge coloring of G
is an assignment of k colors to the edges of G so that adjacent edges have different colors. The
chromatic index of G, denoted by χ′(G), is the smallest k for which G has a k-edge coloring.
Vizing’s theorem states that the chromatic index χ′(G) is at least ∆(G) and at most ∆(G) + 1,
where ∆(G) is the maximum degree of the graph G [10]. Graphs with χ′(G) = ∆(G) are called
Class 1, and graphs with χ′(G) = ∆(G) + 1 are called Class 2.

A k-total coloring of G is an assignment of k colors to the vertices and edges of G so that
adjacent or incident elements have different colors. The total chromatic number of G, denoted
by χ′′(G), is the smallest k for which G has a k-total coloring. Clearly, χ′′(G) ≥ ∆(G) + 1 and
the Total Coloring Conjecture (TCC) states that the total chromatic number of any graph is at
most ∆(G) + 2 [1, 10]. Graphs with χ′′(G) = ∆(G) + 1 are called Type 1, and graphs with
χ′′(G) = ∆(G) + 2 are called Type 2.

A vertex coloring φ : V (G) → 1, 2, . . . ,∆(G) + 1 is called conformable if the number of color
classes (including empty color classes) of parity different from that of |V (G)| is at most def(G).
Note that if G is a regular graph, then φ is called conformable if each color class has the same parity
as |V (G)|. A graph is said to be conformable if it has a conformable vertex coloring; otherwise, it
is said to be non-conformable.

The generalized Petersen graph G(n, k), where n ≥ 3 and k ∈ {1, 2, . . . , n−1}, is the graph with
vertex set V (G(n, k)) = {ui, vi | i ∈ 0, 1, . . . , n− 1} and edge set E(G(n, k)) = {uiui+1, uivi, vivi+k |
i ∈ 0, 1, . . . , n− 1}, with indices taken modulo n. Clearly, the graph G(n, k) and the graph
G(n, n − k) are isomorphic. Therefore, we can consider that k ≤ ⌊n

2 ⌋. Additionally, the graph
G(5, 2) is the well-known Petersen graph. The line graph of G, denoted by L(G) is the graph whose
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vertex set is the edge set of G, and two vertices of L(G) are adjacent if the corresponding edges
are adjacent in G.

An important connection between the total chromatic number and the conformability of graphs
was established in Theorem 1.1 and Corollary 1.1.

Theorem 1.1 (Chetwynd and Hilton [2], 1988). If G is Type 1, then G is conformable.

Corollary 1.1 (Chetwynd and Hilton [2], 1988). If G is non-conformable, then G is not Type 1.

It is known that determining the chromatic index and the total chromatic number are NP-
complete problems even for regular graphs [6, 7]. In 2018, Vignesh et al. [9] conjectured that all
line graphs of complete graphs L(Kn) are Type 1. In 2021, Mohan et al. [8] verified the TCC to the
set of quasi-line graphs, which is a generalization of line graphs, and present some infinite families
of Type 1 graphs. In 2022, Jayaraman et al. [5] determined the total chromatic number for certain
line graphs. Recently, Faria et al. [4] determined the conformability of line graphs L(G), when G
is Class 1 (Theorem 1.2) and proposed Question 1.1.

Theorem 1.2 (Faria et. al [4]). Let G be a k-regular graph. If G is Class 1, then L(G) is
conformable.

Question 1.1 (Faria et al. [4]). Is there a k-regular graph G, k ≥ 3, such that the line graph L(G)
is non-conformable?

In 1969, Watkins [11] introduced the generalized Petersen graphs, an important graph class
related to the well known Four color Conjecture. Watkins [11] established that the Petersen graph
G(5, 2) is the only Class 2 graph of the class. Dantas et al. [3] proved that there is a finite number
of Type 2 generalized Petersen graphs. Until now, the only known Type 2 graphs of this class are
G(5, 1) and G(9, 3).

In this paper, we prove that the line graph of the generalized Petersen graph is conformable;
that L(G(n, 1)), for n ≥ 3, is Type 1 ; and prove that if L(G(n, k)) is Type 1, then L(G(n′, k′)) is
Type 1, for all n′ ≡ 0 mod n and k′ ≡ k mod n. In order to investigate Question 1.1, we extend
the search for Type 2 line graphs from regular graphs which are conformable. Furthermore, we
propose Conjecture 1.1, for which our results are positive evidences.

Conjecture 1.1. If G is a k-regular, k ≥ 3, Class 1 graph, then L(G) is Type 1.

2 Main Result

In this section, we prove that L(G(n, k)) is conformable, L(G(n, 1)) is Type 1 and we show that
if L(G(n, k)) is Type 1, then L(G(n′, k′)) is Type 1, where n′ ≡ 0 mod n and k′ ≡ k mod n.

From the definition of line graphs, we describe L(G(n, k)) as follows: for i ∈ {0, 1, . . . , n − 1},
the set of vertices of L(G(n, k)) is u′i = uiui+1, mi = uivi, and v′i = vivi+k, called the vertices of
the outer cycle, the articulations, and the inner cycles, respectively. Therefore, the set of edges
of L(G(n, k)) is {u′iu′i+1} ∪ {v′iv′i+k} ∪ {u′imi, u

′
imi+1} ∪ {miv

′
i,miv

′
i−k}. Figure 1 presents three

examples of L(G(n, k)).

Theorem 2.1. The graph L(G(n, k)) is conformable.

Proof. Consider the following two cases:

1. If G(n, k) is the Petersen graph G(5, 2), then we exhibit a 5-total coloring for L(G(5, 2)) (Fig-
ure 1c). Therefore, L(G(5, 2)) is Type 1, and from Theorem 1.1, L(G(5, 2)) is conformable.
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(a) (b) (c)

Figure 1: In 1a and 1b, the line graphs L(G(3, 1)) and L(G(5, 1)), respectively. In 1c, the line
graph L(G(5, 2)) with a 5-total coloring. Source: the authors.

2. If G(n, k) is not the Petersen graph, then from Watkins [11], G(n, k) is Class 1, and from
Theorem 1.2, L(G(n, k)) is conformable.

Let G1 ≃ L(G(n1, k)) and G2 ≃ L(G(n2, k)) be two graphs with outer cycle, articulations, and
inner cycles of G1 denoted by u′i, mi, and v′i for i ∈ {0, 1, . . . , n1 − 1}, respectively, and of G2

denoted by x′i, pi, and y′i for i ∈ {0, 1, . . . , n2}, respectively. The gluing operation of G1 and G2,
denoted by G1

<
= G2, results in the graph G, defined as follows:

V (G) = (V (G1) ∪ V (G2)) (1)

E(G) = [(E(G1) ∪ E(G2)) \R] ∪A (2)

such that R = R1 ∪R2 and for each i ∈ {0, 1, . . . , k − 1}:

R1 = {u′0u′n1−1,m0u
′
n1−1,miv

′
i+n1−k, v

′
iv

′
i+n1−k} (3)

R2 = {x′0x′n2−1, p0x
′
n2−1, piy

′
i+n2−k, y

′
iy

′
i+n2−k} (4)

and

A = {u′0x′n2−1, u
′
n1−1x

′
0,m0x

′
n2−1, p0u

′
n1−1} ∪A′

A′ = {miy
′
i+n2−k, piv

′
i+n1−k, v

′
iy

′
i+n2−k, y

′
iv

′
i+n1−k}

(5)

We call R the set of edges removed for gluing G1 with G2, and A the set of edges added for gluing
of G1 and G2. Graph G1

<
= G2 for k = 1 is depicted in Figure 2.

Lemma 2.1, states that the gluing operation is closed for the class of line graphs of G(n, k).

Lemma 2.1. If G1 ≃ L(G(n1, k)) and G2 ≃ L(G(n2, k)), then G1
<
= G2 ≃ L(G(n1 + n2, k)).

Proof. Let G1 := L(G(n1, k)) and G2 := L(G(n2, k)) with labeled vertices u′i, mi, and v′i for G1,
and x′i, pi, and y′i for G2. It is easy to verify that the graph G := G1

<
= G2 is 4-regular. To show

that G ≃ L(G(n1 + n2, k)), we will define a bijection r from G to L(G(n1 + n2, k)) that preserves
the adjacency between vertices and edges of G and L(G(n1 + n2, k)).

Let r : V (G) → L(G(n1 + n2, k)) be defined as follows:

1. For the outer cycle:

r(u′i) = u′i for i ∈ {0, 1, . . . , n1 − 1}
r(x′i) = u′n1+i for i ∈ {0, 1, . . . , n2 − 1}

(6)
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(a)

(b)

Figure 2: For k = 1, the gluing of G1 with G2 results in the graph G. In 2a, the dashed edges
belong to the set R1 ∪ R2. Note that the set R1 corresponds to the dashed edges from the graph
G1, and the set R2 corresponds to the dashed edges from the graph G2. In 2b, the bold edges
belong to the set A. Source: the authors.

2. For the articulations:

r(mi) = mi for i ∈ {0, 1, . . . , n1 − 1}
r(pi) = mn1+i for i ∈ {0, 1, . . . , n2 − 1}

(7)

3. For the inner cycles:

r(v′i) = v′i for i ∈ {0, 1, . . . , n1 − 1}
r(y′i) = v′n1+i for i ∈ {0, 1, . . . , n2 − 1}

(8)

If an edge ab in G does not belong to A, then it is easy to see that ab is an edge of G if and only
if r(a)r(b) is an edge of L(G(n1 + n2, k)). Suppose that ab ∈ A.

1. Suppose that ab ∈ {u′0x′n2−1, u
′
n1−1x

′
0,m0x

′
n2−1, p0u

′
n1−1}. From (6) and (7):

• u′0x
′
n2−1 is an edge ofG if and only if r(u′0)r(x′n2−1) = u′0u

′
n1+n2−1 is an edge of L(G(n1+

n2, k));
• u′n1−1x

′
0 is an edge of G if and only if r(u′n1−1)r(x

′
0) = u′n1−1u

′
n1

is an edge of L(G(n1+
n2, k)).

Hence, the vertices of G preserve the adjacency of elements in the outer cycle.

• m0x
′
n2−1 is an edge of G if and only if r(m0)r(x

′
n2−1) = m0u

′
n1+n2−1 is an edge of

L(G(n1 + n2, k));
• p0u

′
n1−1 is an edge of G if and only if r(p0)r(u′n1−1) = mn1

u′n1−1 is an edge of L(G(n1+
n2, k)).

Hence, the vertices of G preserve the adjacency of elements in the outer cycle and articula-
tions.
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2. Suppose that ab ∈ {miy
′
i+n2−k, piv

′
i+n1−k, v

′
iy

′
i+n2−k, y

′
iv

′
i+n1−k} such that i ∈ {0, 1, . . . , k −

1}. From (7) and (8):

• miy
′
i+n2−k is an edge of G if and only if r(mi)r(y

′
i+n2−k) = miv

′
i+n1+n2−k is an edge of

L(G(n1 + n2, k));

• piv
′
i+n1−k is an edge of G if and only if r(pi)r(v′i+n1−k) = mn1+iv

′
i+n1−k is an edge of

L(G(n1 + n2, k)).

Hence, the vertices of G preserve the adjacency of elements in the articulations and inner
cycles.

• v′iy
′
i+n2−k is an edge of G if and only if r(v′i)r(y′i+n2−k) = v′iv

′
i+n1+n2−k is an edge of

L(G(n1 + n2, k));

• y′iv
′
i+n1−k is an edge of G if and only if r(y′i)r(v′i+n1−k) = v′n1+iv

′
n1+i−k is an edge of

L(G(n1 + n2, k)).

Hence, the vertices of G preserve the adjacency of elements in inner cycles.

Therefore, G ≃ L(G(n1 + n2, k)).

Let ϕ1 and ϕ2 be two 5-total colorings of L(G(n1, k)) and L(G(n2, k)), respectively. We say
that ϕ1 is compatible with ϕ2 if it is possible to define a 5-total coloring for L(G(n1 +n2, k)) using
ϕ1 and ϕ2.

Dantas et al. [3] proved that if G(n, k) is Type 1, then G(n′, k′) is Type 1 for any n′ ≡ 0
mod n and k′ ≡ k mod n. Similarly, we show that this property holds for the line graph of the
generalized Petersen graph.

Theorem 2.2. If L(G(n, k)) is Type 1, then L(G(n′, k′)) is Type 1 for every n′ ≡ 0 mod n and
k′ ≡ k mod n.

Proof. Let n ≥ 3 and k be positive integers such that L(G(n, k)) is Type 1 with a 5-total coloring
ϕ. If n′ ≡ 0 mod n, then there exists a positive integer q1 such that n′ = q1n. First, we prove
that L(G(n′, k)) is Type 1 and so we prove that L(G(n′, k′)) is Type 1, where k′ ≡ k mod n. It
is easy to see that L(G(n′, k)) is obtained by gluing q1 copies of L(G(n, k)). Therefore, to prove
that L(G(n′, k)) is Type 1, it is sufficient to show that ϕ is compatible with itself. From definition,
gluing L(G(n, k)) to itself is obtained by removing the edges in (3) and (4) and adding the edges
in (5), recursively, q1 times. Moreover, from Lemma 2.1, L(G(nq1, k)) ≃ L(G(n′, k)) is obtained.
Let us define a 5-total coloring ψ for L(G(n′, k)).

1. If an element x of L(G(n′, k)) does not belong to A, then we set ψ(x) = ϕ(x).

2. Suppose that x is an edge of L(G(n′, k)) belonging to A. To distinguish the vertices between
L(G(n, k)) and its copy, let u′i, mi, and v′i be the labeled vertices of L(G(n, k)), and x′i,
pi, and y′i be the labeled vertices of its copy. We remark that L(G(n, k)) and its copy are
assigned to the 5-total coloring ϕ, ϕ(u′0) = ϕ(x′0), ϕ(u′n−1) = ϕ(x′n−1), and ϕ(m0) = ϕ(p0).
Thus, ϕ(u′0) ̸= ϕ(x′n−1) and ϕ(m0) ̸= ϕ(x′n−1). We assign, therefore:

• ψ(u′0x
′
n−1) = ϕ(u′0u

′
n1−1);

• ψ(u′n−1x
′
0) = ϕ(u′0u

′
n−1);

• ψ(m0x
′
n−1) = ϕ(m0u

′
n−1);

• ψ(p0u
′
n−1) = ϕ(m0u

′
n−1).

For each i ∈ {0, 1, . . . , k − 1}, we have ϕ(mi) = ϕ(pi) and ϕ(v′i+n−k) = ϕ(y′i+n−k). Thus,
ϕ(mi) ̸= ϕ(y′i+n−k) and ϕ(pi) ̸= ϕ(v′i+n−k). Therefore, we assign:
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• ψ(miy
′
i+n−k) = ϕ(miv

′
i+n−k);

• ψ(piv
′
i+n−k) = ϕ(piy

′
i+n−k);

Since ϕ(v′i) = ϕ(y′i), ϕ(v′i) ̸= ϕ(y′i+n−k) and ϕ(y′i) ̸= ϕ(v′i+n−k). We assign, therefore,
ψ(v′iy

′
i+n−k) = ϕ(v′iv

′
i+n−k) and ψ(y′iv

′
i+n−k) = ϕ(y′iy

′
i+n−k). Consequently, L(G(n′, k)) is

Type 1.

Let k′ be a positive integer such that k′ ≡ k mod n, i.e., k′ = nq2 + k. Observe that
L(G(n′, k′)) can be obtained from L(G(n′, k)) by replacing the edges v′iv′i+k by v′iv

′
i+k+nq2

and miv
′
i−k by miv

′
i−k−nq2

. Additionally, in the gluing process, the vertex v′i+k+nq2
belongs

to the q2-th copy of L(G(n, k)) and has the same assignment as the vertex v′i+k, and the
same holds for v′i−k−nq2

.

Consequently, we can assign ψ(v′iv′i+k+nq2
) = ϕ(v′iv

′
i+k) and ψ(miv

′
i−k−nq2

) = ϕ(miv
′
i−k).

Therefore, L(G(n′, k′)) is Type 1.

Theorem 2.3. The graph L(G(n, 1)) is Type 1, for all n ≥ 3.

Proof. The proof is carried out as follows: we define 5-total colorings ϕ1, ϕ2, and ϕ3 for the graphs
L(G(3, 1)), L(G(4, 1)), and L(G(5, 1)), respectively, as shown in Figures 3a, 3b, and 3c.

1. Suppose n = 3q. Observe that L(G(3, 1)) is Type 1. From Theorem 2.2, L(G(3q, 1)) is Type 1.

2. Suppose n = 3q+1. Observe that L(G(3q+1, 1)) can be obtained by gluing L(G(4, 1)) with
q−1 copies of L(G(3, 1)). Moreover, note that ϕ2 is compatible with ϕ1. Thus, L(G(3q+1, 1))
is Type 1.

3. Suppose n = 3q+2. Observe that L(G(3q+2, 1)) can be obtained by gluing L(G(5, 1)) with
q−1 copies of L(G(3, 1)). Moreover, note that ϕ3 is compatible with ϕ1. Thus, L(G(3q+2, 1))
is Type 1.

Corollary 2.1. Let n and k be positive integers such that n ≥ 3 and k <
⌊
n
2

⌋
. If n′ ≡ 0 mod n

and k ≡ 1 mod n, then the graph L(G(n′, k)) is Type 1.

Proof. From Theorem 2.3 L(G(n, 1)) is Type 1 and from Theorem 2.2, there are two positive
integers q1, q2 ∈ N such that L(G(nq1, nq2 + 1)) is Type 1. Thus, L(G(n′, k)) is Type 1 where
n′ ≡ 0 mod n and k ≡ 1 mod n.

3 Conclusion
In order to determine the total chromatic numbers of all L(G(n, k)) graphs for any pair of

natural numbers (n, k) such that k ≤ ⌊n
2 ⌋, it is necessary to find compatible 5-total colorings

among the graphs L(G(2k + j, k)) where j ∈ {1, 2, . . . , 2k + 1}, called basic graphs. Notice that
for k = 1, the basic graphs are L(G(3, 1)), L(G(4, 1)), and L(G(5, 1)), and Theorem 2.3 provides
compatible 5-total colorings for them, allowing us to determine the total chromatic number of
L(G(n, 1)).
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(a) (b)

(c)

Figure 3: Three 5-total colorings ϕ1, ϕ2 and ϕ3 to L(G(3, 1)), L(G(4, 1)) and L(G(5, 1)), respec-
tively. Source: the authors.
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