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Abstract: In 1997, Goldreich, Goldwasser and Halevi presented the GGH cryptosystem, which
is based on hard lattice problems. Only two years later, Nguyen pointed out major flaws on
the scheme. From that point on, the system was considered officially dead. However, in 2012,
Yoshino and Kunihiro proposed some improvements on the GGH cryptosystem, claiming to have
fixed the flaws pointed out by Nguyen. In this paper, we make a thorough analysis of this tweaked
GGH scheme, showing that, in practice, it behaves mostly in the same way as the original scheme.
We also propose some modifications that can effectively make the new GGH different from the
original one.
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1 Introduction

The GGH cryptosystem was introduced to the world in 1997 [4]. Its security is based on the
assumption that lattice basis reduction is a hard problem. It is considered a post-quantum
cryptosystem, since not even quantum computers would be able to efficiently break it using
known algorithms, unlike RSA [9], which could be broken by a quantum computer capable of
running Shor’s algorithm [11].

Its main idea is to encode a message into a lattice vector v, add some small perturbation r
and generate the ciphertext c = v + r. The norm of the vector r must be sufficiently small, so
that v is the lattice vector closest to c. Thus, decryption is equivalent to solving an instance of
the closest vector problem (CVP).

GGH employs a secret key with some good structure and then hides this structure in the
public key. In order to recover the secret key from the public key, one has to perform a lattice
basis reduction, which is assumed to be hard. Besides that, as will be discussed later on this
paper, GGH is susceptible to decryption errors. The probability of these errors can be minimized
by properly choosing the parameters of the system.

Two years after GGH was presented, Nguyen showed that it has a major flaw in its design
[8] and argued that, even modified, it cannot provide a good level of security without becoming
impractical. Since then, GGH has been regarded as a dead system [3]. At least, that seemed
to be the case until 2012, when Yoshino and Kunihiro proposed some improvements on the
scheme [14]. They claim to have fixed the flaws of GGH, improving its security. According to
the authors, this modified GGH, which we call GGH-YK, has no longer CVP as its underlying
problem and is no longer susceptible to decryption errors.

Throughout this paper, we discuss the working principles of the GGH-YK scheme. Our goal
is to show that, even with the modifications proposed by Yoshino and Kunihiro, nothing seems
to have changed: CVP is still the underlying problem of the scheme, which means that, in
practice, GGH-YK behaves in the same way as the original GGH. Complementing this analysis,
we propose some additional changes in order to make GGH-YK effectively different from the
original scheme.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 1, 2015.
Trabalho apresentado no XXXV CNMAC, Natal-RN, 2014.

DOI: 10.5540/03.2015.003.01.0095 010095-1 © 2015 SBMAC

http://dx.doi.org/10.5540/03.2015.003.01.0095


The rest of this paper is organized as follows. In Section 2, we make a brief review of lattice
theory. The original GGH scheme is described in Section 3 and the attack proposed by Nguyen
is discussed in Section 4. In Section 5, we describe GGH-YK and, in Section 6, we propose some
modifications to it. Finally, in Section 7, we present our results and conclusions.

2 Background on Lattices

In this section, we provide a theoretical background on lattices. Some fundamental concepts
are briefly discussed, such as lattice bases, lattice determinants and the orthogonality defect of
a basis.

Let B = [b1 · · ·bn] be an n × n matrix, where b1, · · · ,bn are linearly independent column
vectors of Rn. The full rank lattice generated by B is the set

L(B) = {Bu | u ∈ Zn} . (1)

The matrix B is called a basis of the lattice. Every lattice has infinitely many bases. Two bases
A and B generate the same lattice if L(A) = L(B). In this case, there exists an unimodular
matrix (an integer matrix with determinant ±1) U such that A = BU .

The determinant of a lattice is the volume of the n-dimensional parallelepiped formed by
the vectors of a basis of the lattice. It is given by the absolute value of the determinant of the
basis. Since two bases differ by a multiplication with an unimodular matrix, the determinant of
a lattice does not depend on the choice of the basis.

The orthogonality defect of a basis B is given by

D(B) =

∏n
i=1 ||bi||
|det(B)|

. (2)

It measures how close to being orthogonal are the vectors of a basis. Unlike vector spaces, not
every lattice has an orthogonal basis. Due to Hadamard’s inequality [13], we have D(B) ≥ 1,
and D(B) = 1 iff B is orthogonal. A basis is considered good if its orthogonality defect is small.
Thus, an orthogonal basis is considered optimal.

Given a good lattice basis, it is easy to obtain a bad basis for the same lattice, but the
inverse is hard in large dimensions. This problem of finding a good basis, given an arbitrary
and possibly bad basis, is closely related to the following problems:

• Shortest Vector Problem (SVP): given a lattice, find a vector v 6= 0 in the lattice, such
that ||v|| is minimum.

• Closest Vector Problem (CVP): given a lattice and a vector c, probably not in the lattice,
find the lattice vector v closest to c.

CVP can be solved using Babai’s rounding algorithm [1], provided that a good basis for the
lattice is known, or by the immersion technique [4], which reduces CVP to SVP. In order to
solve SVP approximately, we must find a reduced lattice basis, which has the property that its
first vector is an approximation for the shortest lattice vector.

Reduced bases have other interesting properties, and there are algorithms to obtain these
bases, such as LLL [6] and BKZ [10]. The problem of finding a reduced basis, the so-called
lattice reduction problem, is also considered hard in arbitrary dimensions.

3 The Original GGH

The scheme proposed by Goldreich, Goldwasser and Halevi [4] employs as secret key an integer
n × n matrix of the form B = γI + P , where γ is an integer, I is the identity matrix and
pi,j ∈ {−t, · · · , t}, for some small integer t. The public key W is obtained by multiplying the
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secret key by a random unimodular matrix U . Thus, we have W = BU . The secret key has very
small orthogonality defect (it is a good basis), while the public key has a large orthogonality
defect.

The encryption of a message x ∈ Zn is given by c = Wx + r. Decryption of c consists of
applying Babai’s algorithm using the secret key, since we expect that r is sufficiently small and,
consequently, Wx is the vector of L(W ) closest to c.

In order for the decryption procedure to work properly, we must make sure that all of the
entries of the vector B−1r have absolute value less than 0.5, which means that the rounding error
vector e = dB−1rc is the null vector. Otherwise, there will be decryption errors. In practice, we
only minimize the probability of these errors, by setting a sufficiently small parameter σ such
that ri = ±σ, for all i = 1, · · · , n.

4 Cryptanalysis of GGH

The most direct way of attacking GGH is to reduce the public key in order to find a good
basis to apply Babai’s algorithm. Even if the secret key itself is not found, the message can
be recovered, provided that the reduced basis is good enough. The other attack employs the
immersion technique, which consists of applying lattice reduction to the basis

Q =

(
w1 · · · wn c
0 · · · 0 1

)
.

If the attack is successful, we find the vector (rT , 1)T at the first row of the reduced basis
obtained after reducing Q.

In 1999, P. Nguyen pointed out major flaws on the GGH scheme [8]. Using lattice reduction,
he solved all the GGH Internet challenges, except in dimension 400, for which he could only
recover partial bits of the message.

Nguyen exploited two weaknesses of the scheme. The first one is that perturbation vectors
are always much shorter than the lattice vectors. As a result, the CVP instance we need to solve
in order to break the system is easier than an arbitrary CVP. The second weakness is related to
the special form of the perturbation vectors.

The first weakness is inherent to the scheme and, at that time, there seemed to be no
easy way to fix it. The second weakness could be fixed by choosing ri ∈ {−σ, · · · , σ} instead of
ri ∈ {−σ, σ} . In this case, though, the perturbation vector r would become even smaller, making
CVP even easier. Even if we choose ri ∈ {±σ,±(σ − 1)}, we still create some vulnerability due
to the particular form of the perturbation vector.

In principle, all of these problems could be bypassed by increasing the dimension of the keys.
However, according to Nguyen, this would make the system impractical. Thus, he came to the
conclusion that GGH cannot offer a good level of security without becoming impractical.

In 2010, Nguyen’s attack was extended by Lee and Hahn [5], and the last GGH challenge,
in dimension 400, was solved. The scheme really seemed to be dead.

5 The Modified GGH Scheme

In 2012, Yoshino and Kunihiro proposed a modified version of GGH [14]. In this new version,
which we call GGH-YK, they try to break the relation between decryption and solving CVP by
increasing the length of the perturbation vector r. They set a new parameter k, such that

ei =

{
0 for at least n− k values of i,
±1 for at most k values of i,

where e is, as before, the rounding error vector (e = dB−1rc). Since e 6= 0, CVP would no
longer be the underlying problem to the system. However, as we will see later, this goal cannot
be achieved in practice without some additional changes to the scheme.
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As in the original GGH, the secret key of GGH-YK is an n × n integer matrix of the form
B = γI + P , where γ is an integer parameter randomly chosen, I is the identity matrix and P
is a random integer matrix such that pi,j ∈ {−1, 0, 1}. We can achieve very small orthogonality
defect by setting γ > n. Let A = B−1. For all i, j, the following properties must hold:

|ai,j | ≤
1

γ
, if i = j; (3)

|ai,j | <
2

γ2
, if i 6= j. (4)

As recommended by Micciancio in [7], the public key W is obtained by computing the Hermite
Normal Form (HNF) of B. A matrix is said to be in the HNF if it is upper triangular, all of
its diagonal entries are positive, the other entries are nonnegative and the largest entry of each
row is in the main diagonal. It provides both efficiency and security, since bases in the HNF are
easier to store and harder to reduce.

Message encoding is the next step. In the GGH-YK scheme, binary messages of length
l ≤ n are encoded into the perturbation vector r instead of a lattice point. First, we set public
parameters (σ, h, k), with h > σ. The idea is that the vector r has small entries, with absolute
value no greater than σ, and large entries of absolute value h. The number of large entries is k.

Before encoding the message, two secret sets S, T ⊂ In = {1, · · · , n} are randomly chosen,
such that |S| = k, |T | = n − l and S ∩ T = ∅. The bits of the message are encoded into the
non-zero entries of r, with the 0’s encoded as negative entries, and the 1’s as positive entries,
according to the following rules:

ri = ±h for all i ∈ S;
ri ∈ {−σ, · · · ,−1} ∪ {1, · · · , σ} for all i ∈ In \ (S ∪ T );
ri = 0 for all i ∈ T.

The encryption of r is given by c = Wx + r, where x = −bW−1rc. In order to decrypt c, we
compute the vector u = B−1c− dB−1cc = B−1r− dB−1rc and then obtain r′ = Bu = r−Be.
The final step of decryption is to determine the entries of e. In their paper, Yoshino and Kunihiro
prove the correctness of the procedure below:

1. If r′i < −h− k, set ei = 1;

2. If r′i > h+ k, set ei = −1;

3. Set ei = 0 otherwise.

After computing the rounding error vector, the original encoded message can be recovered, since
r = r′ +Be. Notice that we are clearly assuming that e is not necessarily the null vector. Also
notice that the decryption process is entirely deterministic, unlike the original GGH, in which
there is a probability of decryption errors.

In order to make the system work properly, we must ensure that the parameters n, σ, h, k, γ
satisfy the following conditions:

σ

γ
+

2kh

γ2
+

2nσ

γ2
<

1

2
, (5)

h− σ
γ

+
2h

γ2
< 1, (6)

2k + 2h < γ. (7)

In short, condition (5) ensures that ei = 0 for all i /∈ S, condition (6) gives us the hope that
ei 6= 0 for at least some index i ∈ S, while (7) is a necessary condition for the correctness of
decryption.
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6 A tweaked version of GGH-YK

After implementing GGH-YK, we noticed that it had some problems. The first one was that it
seemed to be impossible to generate a secret key satisfying condition (3). In order to generate
a valid secret key, we relaxed (3) to

|ai,j | ≤
2

γ
, if i = j, (8)

and kept (4). After this change, (5) and (6) had to be modified. Employing the same procedures
used to derive (5) and (6), but keeping the inequalities tight, we got the following conditions:

2σ

γ
+

2kh

γ2
+

2nσ

γ2
<

1

2
+

2σ(k + 1)

γ2
, (9)

2(h− σ)

(
1

γ
− 1

γ2

)
< 1. (10)

Hence, in our first attempt to fix GGH-YK, inequalities (3), (5) and (6) were replaced by
conditions (8) to (10). In this attempt, we decided to keep (7), since decryption depends on it.
Condition (4) was also left untouched.

The second problem we found was that, even after the changes we have just described, the
rounding error vector e was always the null vector. Consequently, GGH-YK does not behave
differently from the original GGH, since decryption is still equivalent to solving an instance of
CVP.

In order to effectively fix GGH-YK, we employed M-matrices as secret keys and created a
variant of GGH-YK, which we call GGHYK-M. An M-matrix is a square matrix of the form
B = γI + P , where γ > ρ(P )1 and pi,j ≤ 0. It can be shown that the inverse of an M-matrix
has only positive entries [2].

Hence, we used as secret key a matrix B = γI + P ∈ Zn×n, where γ ∈ Z and pi,j ∈ {−1, 0}.
In order to ensure that γ > ρ(P ), it is sufficient to choose γ = αn, for some small integer α.
The public key W is still the Hermite Normal Form of B. Along with (8), we imposed another
condition over the diagonal entries of the matrix A = B−1, namely

|ai,j | >
1

γ
, for all i = j. (11)

After these modifications, we had to replace condition (7) by the following inequality:

h

γ
>

1

2
, (12)

which means that 2h > γ. We also imposed a new condition, in order to keep the decryption
process deterministic:

h+ k < γ. (13)

As a consequence of our new conditions, the rounding error vector e = dB−1rc now satisfies the
following properties:

ei =

{
0 for all i /∈ S;
1 for all i ∈ S. (14)

We encode the vector r only with positive entries. While in GGH-YK the message bits are
encoded into non-zero entries (small and large), in GGHYK-M these bits are encoded only into
small entries, and the large entries are redundant. As in GGH-YK, the subset S contains the
indices of the large entries of r. There are no longer zero entries, which means that the subset
T no longer exists.

1ρ(P ) = max {|λi| : λi is an eigenvalue of P} is the spectral radius of P .
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Notice that we encode exactly n − k message bits into a vector of length n. The 0 bits are
encoded as entries randomly chosen from the set {1, · · · , σ/2}, and the 1 bits as entries randomly
chosen from the set {σ/2 + 1, · · · , σ}. We only require that an even value for σ is chosen.

Encryption works exactly as in GGH-YK. Decryption is also similar to GGH-YK, but the
final step, in which we determine the entries of e according to the corresponding entries of r′,
was slightly modified:

1. If r′i < 0, set ei = 1;

2. Set ei = 0 otherwise.

After computing e, we recover the encoded message vector r because, as in GGH-YK, we have
r = r′ +Be.

7 Our Results and Conclusions

In our implementation of GGHYK-M, we used the NTL C++ library (version 5.5.1) [12], running
on a dual core AMD E-350 processor, with 1.6 GHz and 4GB of RAM. In order to avoid
approximation errors, we employed only integer arithmetic. Table 1 shows the key generation,
encryption and decryption times, in seconds, for the GGHYK-M scheme with several parameters.

(n, σ, h, k) Secret key Public key Encryption Decryption

(128, 32, 193, 16) 2, 36 9, 28 0, 02 2, 32
(200, 64, 301, 32) 11, 93 89, 94 0, 02 11, 83
(256, 64, 385, 32) 13, 86 331, 53 0, 03 33, 90
(300, 128, 451, 50) 22, 29 717, 54 0, 04 61, 58
(350, 256, 526, 64) 35, 45 1627, 1 0, 06 115, 92
(400, 256, 601, 64) 51, 46 3075, 71 0, 07 210, 41

Table 1: Key generation, encryption and decryption times, in seconds.

Decryption turned out to be quite slow, since it requires the inversion of the secret basis. In
order to speed up decryption, the secret basis inverse can be previously stored, so that it will
no longer be necessary to compute it during the decryption process. Decryption times with the
secret key inverse previously stored are shown on Table 2. It is clear that the inversion of the
secret matrix is what slows down decryption.

(n, σ, h, k) Decryption

(128, 32, 193, 16) 0, 01
(200, 64, 301, 32) 0, 04
(256, 64, 385, 32) 0, 08
(300, 128, 451, 50) 0, 11
(350, 256, 526, 64) 0, 17
(400, 256, 601, 64) 0, 27

Table 2: Decryption time, in seconds, with the secret key inverse previously stored.

The security of GGHYK-M was tested by employing lattice reduction techniques (LLL and
BKZ). None of the attacks were successful in dimensions greater than 300. Notice that, since the
usual attacks on GGH (reducing the public basis to apply Babai’s algorithm and the immersion
technique) are ways of solving CVP and this is no longer the underlying problem of GGHYK-M,
these attacks no longer work against the system. Recovering the secret key itself is the only
way, up to now, to break the scheme. Hence, if lattice reduction fails to find the secret key, the
security of the scheme seems unaffected.
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It is important to emphasize that using M-matrices as secret keys does not affect the security
of the scheme at all, because the Hermite Normal Form of M-matrices is indistinguishable from
the HNF of general matrices. Thus, if an attacker picks up a public key obtained from an
M-matrix, he does not take any advantage from this fact. We also remark that the Hermite
Normal Form reduces the size of the keys, so that employing dimension 300 or even larger does
not compromise the practical viability of the system.

We come to the conclusion that GGHYK-M provides major changes on the GGH-YK variant,
making it effectively different from the original GGH. As far as the results of our experiments
show, GGHYK-M is secure and viable. Hence, we highly encourage further research on the
feasibility of lattice-based cryptography as an alternative to existing public-key cryptosystems
in a post-quantum era.
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