Trabalho apresentado no XLIII CNMAC, Centro de Convenções do Armação Resort - Porto de Galinhas - PE, 2024

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Otimização Multiobjetivo dos Parâmetros da Equação de Estado de Patel-Teja Utilizando 3 (Três) Funções Objetivo

Noelle Cristina do Amaral Viana¹, Luiz Nélio Henderson² UERJ, Instituto Politécnico - Nova Friburgo, RJ, Brasil Breno Tiago de Souza Mota³ UNIFESSPA/IEA, Santana do Araguaia, PA, Brasil

Resumo. A estimativa de parâmetros empíricos para as equações de estado segue uma abordagem clássica, minimizando uma função que agrega os desvios relativos da pressão de saturação e do volume do líquido saturado dos fluidos de interesse em diferentes temperaturas. Neste trabalho os parâmetros empíricos da equação de estado de Patel-Teja foram estimados com três funções objetivo que avaliam de forma independente o desvio da pressão de saturação, do volume do líquido saturado e da entalpia de vaporização de substâncias puras. As frentes de Pareto resultantes foram geradas por meio de uma técnica de refinamento com a imposição de restrições no contradomínio em conjunto com o método de otimização multiobjetivo MOPSO-Light. Os parâmetros ótimos escolhidos dentro destas regiões apresentaram uma melhor performance global na predição das propriedades termodinâmicas.

Palavras-chave. Estimativa de Parâmetros, Multiojbetivo, Equação de Estado, Patel-Teja

1 Introdução

Uma equação de estado (EOS, do inglês, Equation Of State) do tipo *PVT* atribui a associação de equilíbrio entre os parâmetros de pressão, volume e temperatura, a partir dos quais se determinam as demais variáveis de estado como Energia interna, Entalpia e Energia livre de Gibbs dentre outras. O cálculo destas propriedades físicas e termodinâmicas são de grande importância para resolução de problemas na indústrias de processos dentro da engenharia [1].

Devido à sua simplicidade, as equações cúbicas de estado são amplamente utilizadas na modelagem termodinâmica de sistemas na indústria do Petróleo. Dentre as EOSs cúbicas mais utilizadas, destacam-se as de Peng-Robinson (PR), Soave-Redlich-Kowng (SRK), cujos parâmetros são calculados a partir das propriedades críticas dos componentes, e a equação de Patel-Teja (PT), que inclui dois parâmetros empíricos ajustáveis $\zeta \in F$ [3].

A determinação desses parâmetros envolve a substmização dos desvios das propriedades físicas e termodinâmicas calculadas comparados com dados experimentais das substâncias puras. No método clássico, utilizado no trabalho original [5], cria-se uma única função objetivo que agrega os desvios da pressão de saturação (Psat) e da densidade do líquido saturado (Dlsat) [5]. Na última década o emprego da otimização multiobjetivo ganhou muita relevância sendo empregada em muitos problemas nas mais diversas áreas da engenharia, isso abriu uma nova perspectiva para a estimativa de parâmetros [6].

¹noelle.viana@iprj.uerj.br

²neliohenderson@gmail.com

³breno.mota@unifesspa.edu.br

 $\mathbf{2}$

Neste trabalho aplicou-se a otimização multiobjetivo com a utilização de três funções objetivo independentes: a primeira que calcula o desvio da pressão de saturação (Psat), a segunda com o cálculo da densidade do líquido saturado (Dlsat) e a terceira com o desvio relativo da entalpia de vaporização (ΔH). Os resultados da otimização são apresentados, geradas para 6 (seis) substâncias puras, 3 (três) polares polares e e apolares.

2 Equação Cúbica de Estado de Patel-Teja

Patel e Teja (1982) [5] propuseram uma extensão da equação de PR para uma forma mais geral que é muito mais precisa para volumes líquidos em comparação com a equação de Peng e Robinson. Essa nova proposta de equação tem a seguinte formulação:

$$P = \frac{RT}{v-b} - \frac{\alpha[T]}{v(v+b) + c(v-b)} \tag{1}$$

onde: R é a constante universal dos gases, α é uma função de temperatura, $b \in c$ são termos constantes. Considera-se importante para a manipulação da Equação 1, a utilização da temperatura crítica (T_c) , a pressão crítica (P_c) e os termos constantes $F \in \zeta$ e ainda volume constante (v). Quando c = b a Equação de Patel e Teja (Equação 1) se reduz a equação de Peng-Robinson e quando c = 0 se reduz equação de Redlich-Kwong ou Soave [5].

As constantes $\alpha[T], \ b \in c$ presentes na Equação 1, são determinadas por meio das seguintes igualdades:

$$a[T] = \Omega_a \frac{R^2 T_c^2}{P_c} \alpha[T_r]$$
⁽²⁾

$$b = \Omega_b \frac{RT_c}{P_c} \tag{3}$$

$$c = \Omega_c \frac{RT_c}{P_c} \tag{4}$$

onde:

$$\Omega_c = 1 - 3\zeta_c \tag{5}$$

$$\Omega_a = 3\zeta_c^2 + 3(1 - 2\zeta_c)\Omega^b + \Omega_b^2 + 1 - 3\zeta_c \tag{6}$$

O termo Ω_b é considerada a menor raiz positiva do polinômio:

$$\Omega_b^3 + (2 - 3\zeta_c)\Omega_b^2 + 3\zeta_c^2\Omega_b - \zeta_c^3 = 0$$
⁽⁷⁾

Neste caso, a função $\alpha[T_r]$ (Equação 2) utilizada é a mesma de Soave e Peng-Robinson, e é dada por meio da igualdade a seguir:

$$\alpha = [1 + F(1 - \sqrt{T_r})]^2 \tag{8}$$

Na região crítica, que se encontra no intervalo $(0.9 < T_R < 1.0)$, o termo ζ_c por ser melhorado a partir de uma função linear da temperatura. Na Equação 9, quando $\zeta'_c = Z_c$ então $T_r = 1$ e desse modo, o valor experimental da compressibilidade é obtido.

$$\zeta_c' = \zeta_c - 10(\zeta_c - Z_c)(T_r - 0.9) \tag{9}$$

Na forma polinomial cúbica do fator de compressibilidade Z, têm - se [5]:

$$Z^{3} - (1 - C)Z^{2} + (A - B^{2} - 2BC - B - C)Z - (AB - BC - B^{2}C) = 0$$
(10)

$$A = \frac{a[T]P}{R^2 T^2} \tag{11}$$

$$B = \frac{bP}{RT} \tag{12}$$

$$C = \frac{cP}{RT} \tag{13}$$

3 Estimativa dos Parâmetros vai Otimização Multiobjetivo

A estimativa de parâmetros foi realizada considerando três funções objetivo independentes. Os valores ótimos referentes aos parâmetros ζ e F são obtidos por meio da minimização do desvio em relação à pressão de saturação (*Psat*), a densidade do líquido saturado (*Dlsat*) e a entalpia de vaporização (ΔH), representadas por FO1, FO2 e FO3, respectivamente:

$$FO1(\zeta, F) = \sqrt{\frac{1}{n} \sum_{j=1}^{\infty} \left[\frac{Psat_i^{exp} - Psat_i^{calc}}{Psat_i^{exp}}\right]^2}$$
(14)

$$FO2(\zeta, F) = \sqrt{\frac{1}{n} \sum_{j=1}^{n} \left[\frac{Dlsat_i^{exp} - Dlsat_i^{calc}}{Dlsat_i^{exp}}\right]^2}$$
(15)

$$FO3(\zeta, F) = \sqrt{\frac{1}{n} \sum_{j=1} \left[\frac{\Delta H_i^{exp} - \Delta H_i^{calc}}{\Delta_i^{exp}}\right]^2}$$
(16)

Vale ressaltar que o sobrescrito exp indica o valor experimental da propriedade para uma dada temperatura (T). Os dados experimentais para cada uma das substâncias analisadas foram extraídos do National Institute of Standards and Technology, [4], considerando uma faixa de temperatura entre o ponto triplo e uma temperatura reduzida de aproximadamente 0.99.

4 Resultados e Discussão

Ao todo foram estimados parâmetros para 6 substâncias puras. A Tabela 1 apresenta os parâmetros de 3 (três) substâncias polares e 3 (três) apolares. Além disso, mostram o número n de pontos e o intervalo de temperatura reduzida T_r utilizados na otimização. O par de parâmetros ζ e F é encontrado através da escolha de um ponto especial na frente de Pareto que visa um equilíbrio entre as três funções objetivo.

Tabela 1: Conjunto ótimo de pareto do Propano.						
	Fluido	ζ	F	n	T_r	
Polares	Dióxido de enxofre	0.308301	0.753676	22	0.51 - 0.99	
	Trifluoreto de nitrogênio	0.317183	0.604935	23	0.51 - 0.98	
	Água	0.312920	0.697683	21	0.52 - 0.98	
Apolares	Flúor	0.323258	0.519609	14	0.52 - 0.97	
	Propano	0.315512	0.638956	12	0.53 - 0.97	
	Butano	0.314870	0.705545	14	0.53 - 0.99	

A Figura 4 mostra a frente de Pareto resultante da otimização dos parâmetros da EOS para a substância Propano. Por meio da Figura 4, é possível perceber o conflito existente entre as três funções objetivo analisadas, pois, à medida que o valor do erro para o volume diminui, os desvios relativos da pressão de saturação e os desvios relativos da entalpia de vaporização tornamse particularmente positivos.

Figura 1: Frente de Pareto do Propano. Fonte: Autor, 2024.

Na Figura 4 o mínimo encontrado para *dlsat* foi de (1.36%) admitindo-se para *Psat* um erro de (53.37%) e ainda um erro de (58.31%) para o ΔH . Já o mínimo encontrado para (ΔH) foi de (0.52%) aceitando-se um erro de (0.97%) para *Psat* e (4.36%) para *dlsat*.

A Figura 4 apresenta o resultado final da otimização da substância Propano. Essa frente foi encontrada impondo a penalidade para os desvios superiores a 0.5% em *Psat*. Nota-se que *FO3* é inversamente proporcional a *FO1* e *FO2*. Um resultado prático dessa discordância entre os objetivos, está na escolha do menor erro de ΔH (0.62%), que é encontrado para um erro de 0.49% para *Psat* e 3.44% em *dlsat*.

Figura 2: Resultado final da frente de Pareto. Fonte: Autor, 2024.

Baseando-se no comportamento da frente de Pareto final (Figura 4), escolheu-se o ponto ótimo (*) com 0.42% para *Psat*, 2.09% para *dlsat* e 0.76% para ΔH . Essa última otimização obteve 902 soluções para o conjunto ótimo de Pareto. Os parâmetros que levam a esse ponto da frente de Pareto tem é $\zeta = 0.315512$ e F = 0.638955.

As Tabelas 2, 3 e 4 apresentam, respectivamente, os resultados da otimização multiobjetivo para as três propriedades termodinâmicas analisadas: pressão de vapor (Psat), densidade do líquido saturado (Dlsat) e entalpia de vaporização (ΔH) . Os desvios percentuais são decorrentes da escolha de um ponto específico da frente de Pareto. As Tabelas 2, 3 e 4 também comparam os resultados deste trabalho com outras 4 (quatro) equações [2]. Os melhores resultados para a propriedade são representados em negrito.

Tabela 2. Desvios para a pressao de vapor.						
Fluido	Psat~%					
Fluido	Autor	\mathbf{PT}	HKM1	4PGDN1	5PGDN	
Água	0.45	2.74	2.86	1.84	0.30	
Butano	0.46	0.55	0.36	0.74	0.29	
Dióxido de enxofre	1.19	2.61	2.16	1.40	1.38	
Flúor	0.38	1.18	0.52	0.84	0.46	
Trifluoreto de nitrogênio	0.43	2.07	1.07	1.20	0.86	
Propano	0.42	0.75	0.40	0.65	0.13	

Tabela 2: Desvios para a pressão de vapor.

rabela 5. Desvios para a densidade do inquido saturado.						
Fluido	Dlsat %					
Fluido	Autor	\mathbf{PT}	HKM1	4PGDN1	5PGDN	
Água	0.19	18.72	18.31	3.62	3.64	
Butano	1.67	3.86	2.93	3.47	3.21	
Dióxido de enxofre	1.15	4.22	4.26	3.22	3.19	
Flúor	2.72	3.88	2.76	2.73	4.50	
Trifluoreto de nitrogênio	2.35	3.64	2.52	6.57	5.45	
Propano	2.09	3.53	2.48	3.53	3.41	

Tabela 3: Desvios para a densidade do líquido saturado.

rabela 1. Desvies para a entarpla de vaporização.						
Fluido	$\Delta H~\%$					
Fiuldo	Autor	\mathbf{PT}	HKM1	4PGDN1	5PGDN	
Água	0.86	3.65	4.25	1.50	2.28	
Butano	0.91	2.23	1.60	3.64	2.92	
Dióxido de enxofre	2.12	2.80	2.41	3.57	4.15	
Flúor	0.90	1.61	1.29	2.91	2.78	
Trifluoreto de nitrogênio	0.84	2.04	1.58	4.28	3.79	
Propano	0.76	1.91	1.32	5.39	3.52	

Tabela 4: Desvios para a entalpia de vaporização.

5 Considerações Finais

O objetivo deste trabalho é a estimação dos parâmetros da equação de estado Patel-Teja, via otimização multiobjetivo, empregando 3 (três) funções. Esta metodologia utilizando 3 (três) funções, que foram minimizadas simultaneamente, é nova, em comparação com a otimização mono-objetivo.

Utilizou-se 6 (seis) substâncias puras, sendo 3 (três) polares e 3 (três) apolares, para a estimação dos parâmetros referentes a cada substância. As funções que foram minimizadas são relacionadas ao erro no cálculo da equação de estado para as respectivas propriedades termodinâmicas: pressão de vapor (*Psat*), densidade do líquido saturado (*Dlsat*) e entalpia de vaporização (ΔH).

Em comparação com o recente trabalho, ver [2], no qual se analisa 4 (quatro) equações de estado, os resultados apresentados neste trabalho obtiveram soluções com ótima acurácia. Como perspectivas futuras, deseja-se expandir essa técnica de estimação de parâmetros para outras substâncias puras e misturas, além de comparar com outras equações.

Referências

- [1] Y. Cengel e M. Boles. Thermodynamics: An Engineering Approach. McGraw-Hill Education, 2002.
- P. N.P. Ghoderao, V. H. Dalvi e M. Narayan. "A five-parameter cubic equation of state for pure fluids and mixtures". Em: Chemical Engineering Science: X 3 (2019), p. 100026. ISSN: 2590-1400. DOI: https://doi.org/10.1016/j.cesx.2019.100026. URL: https://www.sciencedirect.com/science/article/pii/S2590140019300334.
- [3] G. M. Kontogeorgis e G. K. Folas. Thermodynamic models for industrial applications: from classical and advanced mixing rules to association theories. John Wiley & Sons, 2009.
- [4] NIST. Fundamental Physical Constants. 2019. URL: https://www.nist.gov/pml/ fundamental-physical-constants (accesso em 16/11/2023).
- [5] N. C. Patel e A. S. Teja. "A NEW CUBIC EQUATION OF STATE FOR FLUIDS AND FLUID MIXTURES". Em: Chemical Engineering Science 37 (1982), pp. 463-473. URL: https://api.semanticscholar.org/CorpusID:95592866.
- [6] G. Rangaiah, F. Zemin e A. Hoadley. "Multi-Objective Optimization Applications in Chemical Process Engineering: Tutorial and Review". Em: Processes 8 (abr. de 2020), p. 508. DOI: 10.3390/pr8050508.