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Abstract. The purpose of this work was to investigate the flow of two-phase fluids via the Buckley-
Leverett equation, including dispersive and diffusive terms. For this, a weighted essentially non-
oscillatory scheme, a Runge-Kutta method and a finite difference scheme were computationally
implemented. The use of these methods made it possible to obtain numerical solutions, without
excessive numerical dispersion and dissipation, sufficient to assist in the understanding of the mixing
profiles of saturated water and petroleum fluids, inside pipelines filled with porous material. In
addition, the impact of adding such terms in the original equation has been studied.
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1 Introduction
The technological advances achieved after the Industrial Revolution, followed by the develop-

ment of equipment dependent on energy sources from petroleum, made the oil industry reach a
crucial role in the world economy. As it is an exhaustible natural source and a potential pollu-
tant, if disposed of in an erroneous way, the efficiency in the extraction process and the detailed
understanding of the phenomena involved become indispensable for the challenges of delivering a
product inserted within a clean economy.

A central problem in this area is the displacement of petroleum through pipes filled with a
porous medium, characterized by the injection of another fluid (saturated water) to help main-
tain the flow inside the tube. In this sense, the mathematical model used to describe the flow
of two-phase incompressible fluids is the classical Buckley-Leverett equation [1]. The property of
nonlinearity of the partial differential equation enables the use of numerical methods and com-
putational techniques, in an attempt to find approximate solutions without spurious oscillations
(numerical dispersion) or excessive numerical dissipation (numerical diffusion).

In preliminary studies, the authors of this work investigated a fifth-order weighted essentially
non-oscillatory scheme applied in the classical Buckley-Leverett equation. Furthermore, the addi-
tion of a diffusive term was performed [2].

In this way, the objective of this work was to include a dispersive term to carry out a study
on the influence of the dispersive and diffusive terms on the numerical solutions of the classical
Buckley-Leverett equation. For that, a weighted essentially non-oscillatory scheme, coupled to a
three-stage Runge-Kutta method and a central finite difference scheme were implemented in the
discretization of the modified Buckley-Leverett equation. Finally, numerical solutions capable of
representing the temporal evolution of the phenomenon were calculated. Own codes were made
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in Octave and with its, the results are achieved regarding the evolution of the mixture between
saturated water and oil.

2 Mathematical Modeling
Currently, a problem of global interest is the extraction of petroleum underground through

a tube filled with a porous medium. After drilling the soil to the underground oil reservoir, a
certain amount is drained due to the high pressure that the oil is found, but as the extraction
progresses, there is a decrease in pressure with consequent interruption of the flow, still leaving
a lot of petroleum in the subsoil. A standard method subsequent to the initial extraction is to
pump water into rest oil reservoir to force the continuation of extraction. In this case, the fluid
is two-phase, oil and water, and the flow is restarted in the porous medium consisting of rock or
sand.

The mathematical modeling that will be described consists of representing the oil one-dimensional
flow through the tube filled with porous material, by water pumping [4]. Such a model was initially
proposed by [1], in studies on the flow of two-phase incompressible fluids in porous media.

Let 0 ≤ q(x, t) ≤ 1 be the fraction of saturated water and 1−q(x, t) the fraction of oil contained
in a pipe filled with a porous material. Such fluids are essentially incompressible, which ensures
that the total flow between the pipe ends is equal to any smaller portion of the pipe.

In this way, in regions of the tube where q = 0 (pure oil) or q = 1 (pure water), the velocities
are constant and distinct, but when 0 < q < 1, the difference between the surface tensions of fluids
causes them to move and mix. A model in which the rate of change of q over time (qt) is described
by the following conservation law,

qt + f(q)x = 0, (1)

in which f(q) =
q2

q2 + a(1− q2)
is the water flux, 0 < a < 1 represents the porosity of the medium

and 1−f(q) is the oil flux, with q = q(x, t). Equation (1) models a flow from left to right, in which
the tube thickness does not influence the dynamics in question.

The reestablishment of the oil flow, from left to right, can be done by filling part of the pipe
on the left with saturated water, allowing the resumption of oil extraction. An initial condition
for modeling that procedure is

q(x, 0) =

{
1, if x < δ
0, if x > δ

. (2)

The initial condition, equation (2), can be approximated by the following function:

q(x, 0) = 1−
[

1 + tanh (α(x− δ))
2

]
, (3)

in which δ is a parameter associated with the position of the function and α corresponds to how
quickly the function varies from zero to one.

Let be the spatial domain [xi, xf ], the boundary condition on the left was of the Dirichlet type
and on the right of the radiation type, that is, when the dynamics reach the boundary, the flow
simply goes through the boundary, is not being affected by the edge.

Considering the effects of infiltration in porous media, the following modification to equation
(1) is

qt + f(q)x = εqxx + ε2κqxxt, (4)

where ε is a diffusibility coefficient and κ is a dispersive coefficient.
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From the point of view of numerical methods, the equation (4) is rewritten as follows(
q − ε2κqxx

)
t

+ f(q)x = εqxx, (5)

and then {
pt + f(q)x = εqxx
p =

(
q − ε2κqxx

) . (6)

The choice of numerical methods to solve equation (6) is essential, as a numerical scheme that
has a high degree of numerical dissipation can stand out and mask the real effect of the dispersive
and diffusive terms of equation (4), impairing the interpretation of the results.

3 Numerical Methods

For this work, a weighted essentially non-oscillatory scheme (WENO-5 method), a central finite
difference scheme (CFDS-4) were chosen for spatial discretization and the third-order Runge-Kutta
TVD method (Total Variation Diminishing) was chosen for temporal discretization.

3.1 Non-oscillatory Schemes and WENO-5

In general, a rth-order essentially non-oscillatory (ENO) scheme chooses the smoothest stencil
among r possibilities and uses only the chosen one to approximate the flow [3]. The idea of weighted
essentially non-oscillatory (WENO) schemes is to find a convex combination of all candidate sten-
cils, for the numerical flow approximation. A weight is assigned to each stencil, representing its
contribution to the process.

The WENO schemes technique is based on the flow version of the ENO schemes, considering a
one-dimensional conservation law ut + f(u)x = 0. The spatial operator that approximates −f(u)x
in xj is given by

L = − 1

∆x
(f̂j+1/2 − f̂j−1/2), (7)

in which ∆x is the size of the spatial discretization and f̂l is the numerical flux.
ENO schemes approximate f̂j+1/2 through a polynomial interpolation at the points of each

stencil [3]. This approximation is given by

f̂j+1/2 = qrk(fj+k−r+1, . . . , fj+k), with, qrk(g0, . . . , gr−1) =

r−1∑
l=0

ark,lgl. (8)

Let g(x) be a smooth function. The average approximation of g(x) in cell Ij is defined by

ḡj =
1

∆xj

∫ xj+1/2

xj−1/2

g(ξ)dξ where ξ ∈ Ij =
(
xj−1/2, xj+1/2

)
. (9)

To obtain the constants ark,l in (8), consider the primitive function of g(x) defined by G(x) =∫ x

−∞ g(ξ)dξ. The value of G
(
xj+1/2

)
can be written as

G
(
xj+1/2

)
=

j∑
i=−∞

∫ xi+1/2

xi−1/2

g(ξ)dξ =

j∑
i=−∞

ḡi∆xi. (10)
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Equation (10) means that, once the average approximations of the cells ḡi are known, the
values of G(x) at the boundary of cell Ii are also known. So, the constants ark,l are determined by
interpolating G

(
xj+1/2

)
by a r degree polynomial P (x), at most. Therefore,

f̂j+1/2 = p
(
xj+1/2

)
= P ′

(
xj+1/2

)
=

r−1∑
l=0

ark,lgl, (11)

where ark,l are obtained from the Lagrange interpolating polynomial [3], with the data in Table 1.

Table 1: ar
k,l coefficients.

r k l = 0 l = 1 l = 2
3 0 1/3 -7/6 11/6

1 -1/6 5/6 1/3
2 1/3 5/6 -1/6

A rth-order ENO scheme implies to a (2r − 1)th-order WENO scheme, so a 3rd-order ENO
scheme leads to a 5th-order WENO scheme. In WENO schemes, for each candidate stencil Sk,
k = 0, 1, . . . , r − 1, a weight ωk is assigned and these are used to calculate the numerical flux

f̂j+1/2 =

r−1∑
k=0

ωkq
r
k(fj+k−r+1, . . . , fj+k). (12)

The weight ωk for the stencil Sk is defined by

ωk =
αk

α0 + . . .+ αr−1
, with αk =

Cr
k

(ε+ ISk)p
, k = 0, 1, . . . , r − 1. (13)

Taking p = r, the coefficients Cr
k are optimal values to determine ωk. The term ISk is an

indicator of smoothness and for r = 3 we have

IS0 = 13
12 (fj−2 − 2fj−1 + fj)

2 + 1
4 (fj−2 − 4fj−1 + 3fj)

2

IS1 = 13
12 (fj−1 − 2fj + fj+1)2 + 1

4 (fj−1 − fj+1)2

IS2 = 13
12 (fj − 2fj+1 + fj+2)2 + 1

4 (3fj − 4fj+1 + fj+2)2
. (14)

This measure was introduced by [3], with the aim of achieving high accurate for the case where
r = 3. Note that as ISk increases, the smoothness decreases and, consequently, αk becomes close
to zero as does ωk, meaning that a weight close to of zero will be assigned to non-smooth solutions.

3.2 Third-order Runge-Kutta TVD
Once the spatial discretization is concluded, a method for temporal discretization that maintains

the non-oscillatory characteristics achieved is necessary.
Numerical methods belonging to the TVD class (Total Variation Diminishing) have the property

of avoiding oscillations that are not typical of the phenomenon under study [4]. A good alternative
is the high-order Runge-Kutta TVD methods, which were developed by [5] in research related to
efficient implementations for ENO’s schemes.

A method is called Total Variation Diminishing (TVD) if, for any data set Un, the values Un+1

computed by the method satisfy TV (Un+1) ≤ TV (Un), where

TV (Un) =

N∑
i=1

|Un
i − Un

i−1| (15)
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is the total variation. In this work, the third-order Runge-Kutta TVD (RK3-TVD) method was
chosen, whose expressions are given by

u(1) = un + ∆tL(un)
u(2) = 3

4u
n + 1

4u
(1) + 1

4∆tL(u(1))
un+1 = 1

3u
n + 2

3u
(2) + 2

3∆tL(u(2)),

(16)

in which L is the spatial operador of differential equation.
The WENO-5 and RK3-TVD methods numerically solve the classical Buckley-Leverett equa-

tion. To discretize the diffusive and dispersive terms of the modified Buckley-Leverett equation,
we use the central finite difference scheme.

3.3 Fourth-order Central Finite Difference Scheme

There are at least two ways to numerically add the U term in the conservation law: one is to
discretize the diffusive term in the flux context [2],

qxx(xi+1/2, t) ∼=
q̄i+3/2 − 2q̄i+1/2 + q̄i−1/2

∆x2
, (17)

and the other in the finite difference context [6],

qxx(xi, t) ∼=
−q̄i−2 + 16q̄i−1 − 30q̄i + 16q̄i+1 − q̄i+2

12(∆x2)
, (18)

In this work, both discretizations were performed, as for the interpretation of the results there
were no significant differences between them, we chose to keep the fourth-order central finite
difference scheme (CFDS-4) in our codes.

This method was also used to discretize the second equation in equation (6), differently of [6]
that use a staggered mesh and numerical integration to incorporate such equation into WENO
scheme. In this way, the dispersive term enters the temporal evolution by replacing the term un

of RK3-TVD method by vn = un− ε2κqxx(xi, t
n), in which qxx(xi, t

n) is defined by equation (18).
Details about stability those methods can be founded in a study of stability analysis presented in
the reference [2].

4 Simulations and Results

The simulations were performed by initial conditions defined in Section 2. For all scenarios, we
have x ∈ [−1, 1] with 256 subintervals, ∆x = 1/124, and ∆t = 0.1∆x. Furthermore, a = 0.5 was
assigned to the constant that characterizes the porous medium, equation (1).

The initial condition is given by q(x, 0) = 1−
[

1 + tanh (50(x+ 0.5))

2

]
, Figure 1, magenta color

(label IC). In all graphs we have a fluids mix when q assumes values between q = 1 (pure water)
and q = 0 (pure petroleum). The comparison of the graphs reveals the emergence of a region where
the fluids mix, between the values of q = 1 (pure water) and q = 0 (pure petroleum), while the
fluid dynamics develops to on the right.

The numerical solution obtained after 400 iterations is showed in Figure 1. In magenta color,
we have the initial condition (IC); in black color we have the solution obtained for the classical
Buckley-Leverett equation (BL), that is, ε = κ = 0; in blue color we have the solution for the
Buckley-Leverett equation with diffusive term (MBL), that is, ε = 0.01 and κ = 0, and in red color
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we have the solution for the complete Buckley-Leverret equation (TMBL), that is, ε = 0.01 and
κ = 8.0.

Figure 1: Initial condition and numerical solution after 400 iterations. Source: The authors.

To observe the influence of added terms two zooms were done in x ∼= −0.5, Figure (2) left and
right.It is noted that the effect of the diffusive term was to spread the mixture between oil and
water more, when comparing the BL solution (black color) and the MBL solution (blue color),
while the dispersive term was to add oscillations in the mixture between oil and water, TMBL
solution (red color) and BL solution (black color).

Figure 2: Zoom 1. Source: The authors.

The same can be concluded in the region of x ∼= 0.3, with a second zoom, Figure (3). The
temporal evolutions follow a similar propagation speed, they all have a more accentuated transition
close to x ∼= 0.5, however, there is greater spread in the mixture in the solution that only includes
the diffusive term (MBL solution, blue color ), compared to the others, and there is an oscillatory
dispersive behavior in the complete solution (TBML, red color).
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Figure 3: Zoom 2. Source: The authors.

5 Final Considerations
In this study, the WENO-5, CFDS-4 and RK3-TVD methods were applied to the Buckley-

Leverett Equation with dispersive and diffusive terms, in order to investigate the temporal evolution
of two-phase fluid flow. The motivation arises from the fact that during petroleum extraction it is
necessary to inject a second fluid (saturated water) in order to maintain the pressure in the pipe.

The mathematical model considered, together with the numerical methods implemented, proved
to be suitable to provide approached solutions sufficiently close to the analytical solution. Sim-
ulations were performed and the results showed that the inclusion of the diffusive and dispersive
terms makes it possible to model different mixture profiles, displaying the different dynamics that
occur in regions where there are transitions between water and oil.
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