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Abstract. Directional drilling can be seen as a well-established technology that has advanced in
the past few years, allowing higher productivity in petroleum exploration. On the other hand, the
design of optimal multi-directional drilling paths has not gained much attention in the literature.
Existing models and algorithms for the optimisation of directional drilling paths often disregard im-
portant petrophysical attributes or apply heuristic methods, which cannot guarantee the optimality
of the generated solutions. In this paper, we employ mixed-integer programming (MIP) to optimize
multiple directional drilling paths. This is achieved by integrating a screening step, capable of iden-
tifying the most promising target regions in terms of flow capacity, with an MIP model responsible
for selecting and sequencing the identified targets. Our approach considers several constraints such
as drift angles, maximum wellbore length, and minimum safety distances. In addition, a branch-
and-cut algorithm is proposed for solving real-world multi-directional instances of challenging sizes.
We carry out a case study in the Campos Basin to validate the proposed models. Preliminary
results show that the optimized drilling paths have superior performance when compared to the
historical average recovery factor of the Campos Basin.

Keywords. Exploration and Production, Well Drilling, Hydraulic Flow Units, Mixed-integer Pro-
gramming.

1 Introduction

In petroleum exploration engineering, directional wells consist of wells with a borehole that
deviates from purely vertical and horizontal straight lines [15]. The azimuth angle of directional
wells typically deviates from its central axis by an angle between 20 and 80 degrees. Among the
existing four types of wells, namely, vertical, horizontal, directional and multilateral, directional
wells effectively serve as an umbrella category that includes all other types. The design of direc-
tional wells requires careful path planning, with a precise specification of target areas, taking into
account the available geosteering equipment. Such paths must usually consider operational con-
straints, such as turning angles, maximum length and safety distances [7]. The problem becomes
even more challenging if multiple directional well paths must be planned simultaneously. In this
case, a careful analysis of all possible scenarios is of primordial importance.

When examining all Brazilian oil basins, the average global recovery rate was approximately
23.6% in 2022. In particular, the Campos Basin, the main O&G production field in Brazil, had a
recovery rate of around 15.4%, which is low relative to the volume of oil available. Among many
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reasons that could justify such low performance, it has been argued that the O&G industry usually
lacks strategies that integrate the placement of wells, identification of prime drilling locations, and
optimisation of directional drilling paths, especially in offshore deep-sea settings [10].

Even though literature can be found on the optimisation of drilling paths, most of these studies
insufficiently account for petrophysical factors, which are crucial in the preliminary selection of
drilling targets [2]. Several heuristic techniques have been introduced to devise the most efficient
drilling paths from an origin point to a specified destination. For example, one can cite, Particle
Swarm Optimisation (PSO) [4], Population-based Algorithms [9] and sequential gradient restora-
tion [11]. However, the literature is scarce if one needs to optimize various paths over several target
locations within an oil field.

In this work, we explore an alternative method to evaluate the performance of directional wells
in the Campos Basin, comprising two primary phases: (i) a target screening process that identifies
regions of maximum potential flow, and; (ii) two mixed-integer programming (MIP) formulations
for the selection and sequencing of targets identified in the previous step. The first formulation,
which is compact, requires a preprocessing step and aims at maximising a score based on the
quality of targets. The second one, a cut-based model designed for real-world scenarios, introduces
safety distance constraints iteratively. Both models account for factors like drift angles, wellbore
length limits, and safety margins. We tested our methods using the UNISIM-I dataset from the
Namorado sandstone oilfield in the Campos Basin, Brazil. Our best-performing well simulation
showed a recovery rate of over 30%, surpassing the historical average for the reservoir in question.

2 Description and Discretisation of UNISIM-I

The UNISIM-I-D model is a well-known representation of the Namorado formation that has
been extensively studied in the literature. We refer the interested reader to, e.g., [5, 7] for further
information about this model.

Hydraulic Flow Units (HFUs) represent specific regions within a reservoir that exhibit distinc-
tive characteristics. For example, [17] describes an HFU as a particular volume within the reservoir
that is correlative, mappable, and identifiable on wireline logs, with the capability for communica-
tion with other HFUs defined similarly. Flow units can be understood as a collection of adjacent
cells within a 3D corner-point grid. Each cell c in the model is identified by a set of logical indices,
defining the oilfield domain as the set

Ω = {c(i,j,k); 1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ k ≤ K}, I, J,K ∈ Z∗
+, (1)

encompassing a total number of np active cells. In this context, Ω represents the discrete embodi-
ment of an entire oilfield.

The screening process for directional drilling can be summarized in the following steps. The
approach begins by identifying clusters based on Discrete Rock Types (DRT), which represent
distinct volumes of rock with similar petrophysical properties. Subsequently, each cluster is mapped
to a graph through a one-to-one function, transforming the cluster cells into graph nodes. The
third step involves calculating the closeness centrality for each node in the graph [7].

Finally, the “maximum closeness centrality” (MCC) cell within each cluster is determined based
on the most central node of the graph. These MCC cells identified through the reservoir model,
referred to as possible drilling targets, can be ordered and represented by the following set:

T = {T1, T2, . . . , Tn}, (2)

where n is the total number of MCC cells identified. For more details, see [7].

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 11, n. 1, 2025.

DOI: 10.5540/03.2025.011.01.0427 010427-2 © 2025 SBMAC

http://dx.doi.org/10.5540/03.2025.011.01.0427


3

3 Mixed-integer Programming Formulations

In this paper, we consider the problem of designing a predefined number of directional drilling
paths passing through the most promising target cells in a reservoir, subject to several operational
constraints, such as maximum wellbore length, drift angle, and safety distances. We chose to model
this problem as a team orienteering problem (TOP), a well-studied variant of the VRP [3], which
is, in turn, one of the most famous in the literature of combinatorial optimisation and MIP.

The problem is defined over a graph G = (V,A), in which V = {0, . . . , n−1} is a set consisting of
a dummy vertex 0 and set of n−1 MCC cells Ti, i ∈ T (Eq. (2)), with coordinates xi = (xi, yi, zi).
Following our previous work [7], to each cell i ∈ V we associate a cell-weighting parameter pi, the
so-called prize, computed as the Euclidean distance between the centroids of i and its nearest cell
located at the boundary of the reservoir. Therefore, the higher the value of pi, cell i will be given
higher priority. In other words, among all MCC cells, the inner ones must be preferred over the
more external ones in the reservoir.

The arc set A = {(i, j) : αij ≤ α, zi > zj ,∀i, j ∈ V \ {0}} represents the connections between
any two cells i and j in V , such that the maximum drift angle of arc (i, j), denoted by αij , is
smaller than a given value α and the vertical position of cell i is higher than the vertical position
of cell j. Therefore, graph G is constructed in such a way as to incorporate operational wellbore
constraints such as enforcing monotonically descending paths and maximum drift angles. Let us
also define the set K = {0, . . . ,m−1} to represent the set of drilling paths rk = (i0, i1, . . . , iq)k, i ∈
V, q < n, k ∈ K, such that for any k1, k2 ∈ K, rk1 ∩ rk2 = ∅. A minimum safety distance ds

between any two paths must be enforced to guarantee a safe and efficient operation. In this paper,
the distance d(rk1 , rk2) between paths rk1 and rk2 is computed as the minimum distance between
their nearest arcs (i, j) ∈ rk1 and (l, k) ∈ rk2 . We say that a collision occurs if any two paths
rk1 and rk2 violate this constraint, i.e., d(rk1 , rk2) < ds. Finally, we define an auxiliary tuple set
Ā = {(i, j, l,m) : ∥(i, j), (l,m)∥ < ds, (i, j), (l, k) ∈ A}, in which ∥.∥ denotes the minimum distance
between any two arcs. Therefore, set Ā represents the set of all collisions among the arcs of set A.
We highlight that building this set requires the computation of O(n4) distances.

Following the above definitions, the problem can be formally defined as computing m paths
over graph G that maximise the total collected prize

∑
k∈K

∑
i∈rk

pi of the visited cells, subject
to

∑
(i,j)∈rk

Lij ≤ L and d(rk1 , rk2) ≥ ds, k1, k2 ∈ K. In this definition, L is the maximum allowed
depth of a given drilling path, given by the sum of all Euclidean distances Lij between each pair
of cells i and j.

In what follows, we introduce two MIP formulations for the aforementioned problem. The first
one consists of a compact model, i.e., the number of variables and constraints can be described by a
polynomial expression on the number of target cells. The second formulation is non-compact since
it is based on an exponential number of constraints and must be solved by an iterative procedure
to guarantee feasibility.

3.1 Compact Formulation

Given the above definitions, we define the following decision variables: (i) xijk, i, j ∈ V, k ∈ K,
is a binary variable that equals 1 if path k visits target cells i and j in this specific order, and
0 otherwise; (ii) yik, i ∈ V, k ∈ K, is valued 1 if cell i is visited by path k, and 0 otherwise;
(iii) uik ∈ Z+ representing the order in which cell i is visited within path k. The multi-directional
drilling path optimisation problem can be defined as in Formulation (3a)–(3j), with u0k := 0, k ∈ K.

max
∑
i∈V ′

∑
k∈K

piyik (3a)

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 11, n. 1, 2025.

DOI: 10.5540/03.2025.011.01.0427 010427-3 © 2025 SBMAC

http://dx.doi.org/10.5540/03.2025.011.01.0427


4

s.t.
∑
j∈V ′

∑
k∈K

x0jk =
∑
i∈V ′

∑
k∈K

xi(n−1)k = m (3b)

∑
k∈K

yik ≤ 1,∀i ∈ V (3c)∑
i∈V \{n−1}

xijk ≥ yjk,∀j ∈ V \ {0}, k ∈ K (3d)

∑
j∈V \{0}

xijk ≥ yik,∀i ∈ V \ {n− 1}, k ∈ K (3e)

∑
i∈V \{n−1}

∑
j∈V \{0}

Lijxijk ≤ L,∀k ∈ K (3f)

xijk + xlmk ≤ 1,∀(i, j, l,m) ∈ Ā (3g)
ujk ≥ uik + 1− (n− 1)(1− xijk),∀i, j ∈ V \ {0}, k ∈ K (3h)
xijk, yik ∈ {0, 1},∀i, j ∈ V, k ∈ K (3i)

uik ∈ Z+. (3j)

In this formulation, the objective function (3a) maximises the total prize collected by the
designed paths among the visited MCC cells. Constraint (3b) makes sure that exactly m paths are
generated. Constraints (3c) allow each cell to be visited at most once by any path, while Constraints
(3d) and (3e) control which cells are visited or not. The maximum allowed measured length of
each path is limited by Constraints (3f). Collisions are avoided by means of the O(n4) constraints
(3g). MTZ constraints (3h) avoid solutions containing subcycles [12]. Further information about
such constraints is available in any literature on routing problems, e.g., [18].

The applicability of the formulation (3a)–(3j) extends to any arbitrary set of general parameters
L, m, α and ds, alongside cell-specific parameters pi and Lij , i, j ∈ V . The consideration of
uncertainties related to these parameters is omitted in our analysis, as addressing such uncertainties
would necessitate distinct optimisation methodologies, such as robust or stochastic optimisation
[6, 14]. Such approaches are beyond the scope of the current paper. The technical team engaged
in the exploration field is responsible for selecting suitable values for the above parameters.

Classical formulations for TOPs usually suffer from symmetries within their feasible region
[1]. For the sake of completeness, we discuss the type of symmetries that most affect formulation
(3a)–(3j) by using an example. Suppose an optimal solution for this problem consists of m = 5
paths visiting any subset of V , there are m! = 5! = 120 possible ways to re-index the paths while
obtaining equivalent solutions.

Our formulation’s search space can be reduced by incorporating two well-known symmetry-
breaking constraints from the literature [13]. The first one (SCB1), or Constraints (4), enforces
that path k must be assigned before path k + 1. Therefore, a natural ordering of the paths is
guaranteed. The second set of symmetry-breaking constraints (SCB2), or Constraints (5), also
introduces an order between paths but employs a different mechanism. [13] notices that the total
prize collected by each path is decreasing with the number of paths m. Therefore, by enforcing
such ordering, paths are not exchangeable among themselves and equivalent re-indexed solutions
can be discarded.

(SBC1) y0k ≥ y0(k+1),∀k ∈ K \ {m− 1} (4)

(SBC2)
∑
i∈V ′

piyik −
∑
i∈V ′

piyi(k−1) ≥ 0,∀k ∈ K \ {0} (5)

From the point of view of a practitioner, formulation (3a)–(3j) presents some advantages, such
as being relatively easy to understand and implement. In addition, a compact model allows the use
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of popular modelling languages and off-the-shelf optimisation software to solve real-world problems
of moderated size. However, for our case study, the UNISIM-I reservoir model, such formulations
may present some challenges. The main one is the need to preprocess the whole set Ā to implement
constraints (3g). We recall that our MCC procedure resulted in |V | := 101 target cells that can
be potentially visited in an optimal solution. Therefore, to fully preprocess set Ā the prohibitive
computation of 104, 060, 401 distances would be necessary, in the worst case. This is a non-trivial,
time-consuming and computationally expensive task that must be avoided if one intends to solve
larger real-world instances.

3.2 Non-compact Formulation and Branch-and-cut Algorithm
Let R be the set of all infeasible routes with respect to the safety distance and subcycle

elimination constraints (i.e., (3g) and (3h), respectively). Also, let A(r) denote the set of arcs in
route r ∈ R. Using this notation, we state the non-compact formulation as in (6).

max
∑
i∈V ′

∑
k∈K

piyik (6a)

s.t. Constraints (3b) − (3f) and (3i) − (3j) (6b)∑
(i,j)∈A(r)

xijr ≤ |A(r)| − 1, ∀r ∈ R. (6c)

As in formulation (3), the objective function (6a) aims at maximising the overall collected prize.
Constraints (3g) and (3h) were omitted because they are implicit from (6c).

In what follows, we describe a branch-and-cut (B&C) algorithm based on the combinatorial
relaxation of formulation (6) regarding constraints (6c). In the proposed B&C, these constraints are
separated for each incumbent candidate integer solution, with this process starting with checking
existing subtours in each route of this solution. For each detected subtour, we generate a valid
inequality (cut) using constraints (6c) and add it to the model (6). During the inspection, we
store all the routes that compose this solution. The second step of our separation procedure checks
for possible collisions among paths. That is, for any two paths rk1 and rk2 in the current integer
solution, k1, k2 ∈ K, we check if d(rk1 , rk2) < ds. If such a collision is verified, we add a constraint
of the type xij + xlm ≤ 1 for the corresponding arcs (i, j) ∈ rk1 and (l,m) ∈ rk2 . This iterative
procedure tends to avoid the computation of the whole set Ā.

4 Computational Experiments
Both formulations were implemented through the Pyomo (v. 6.4.4) modelling language and

solved by the software CPLEX (v. 12.7) in an Intel i7 CPU with 3.60GHz and 24GB of RAM
running under Linux Mint 20.2 64bits. A time limit of 1h was set for each optimisation run and all
instances were solved to optimality. Oil recovery simulations were carried out using CMG’s IMEX
software over a 40-year period.

In order to keep the presentation short, we omit computational results regarding the com-
putational efficiency of the proposed B&C algorithm. However, our computational experiments
demonstrated its superiority over the solution of the compact formulation.

4.1 Production Analysis
To analyse the technical and economic feasibility of the proposed methodology, we carried out

tests of cumulative oil production (COP) and oil recovery factor (ORF). The ORF measures how
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much of the oil in place can be extracted using current technology. Both COP and ORF metrics
are commonly used in the scientific literature and industry [8].

Using these metrics, we compared the results found by the approach proposed in this work for
different problem parameters, such as the maximum measured length L and number of boreholes
m. For example, well1000, well2000 and well3000 represent groups of four directional wells with
L = 1000m, 2000m and 3000m, respectively. These are also compared with the original vertical
wells drilled in the Campos Basin [5] (denoted Originals), the wells proposed by [16] (denoted
M1M2M3M4), and a single directional well presented in [7] (denoted DP70).

Our preliminary results show that well2000 almost doubled the ORF obtained by DP70. In
general, the newly found wells perform better than other results found in the literature. Such
results showcase the advantages of optimally planning multi-directional wells. The data from the
experiments can be seen in figure 1 and reinforce that the approach presented is robust, efficient
and promising for optimizing petroleum exploration, offering valuable insights to improve future
research and industrial practice.

Figure 1: Oil recovery factor – ORF. Fonte: Autores.

5 Conclusions
This work presents an optimisation model for multi-directional petroleum exploration using

MIP and flow simulations. We propose a compact formulation and a branch-and-cut algorithm
for solving the problem. Preliminary results showed the computational efficiency of the proposed
exact algorithm. A case study from Brazil’s Campos Basin demonstrates the potential of optimized
drilling paths to exceed the basin’s historical recovery rates significantly. This novel approach
promises significant advancements in directional drilling and the optimisation of offshore oil and
gas production.
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