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Abstract. A washing machine has an interesting and complex dynamical behavior, which can be
well described by a set of nonlinear differential equations. When analyzing the dynamics of a washing
machine, the steady state motion (periodic solution) is an important response to consider and can
be evaluated as a solution of a periodic boundary-value problem. The unbalance generated by the
unevenly distribution of clothes during centrifugation is highly random and, therefore, a stochastic
model is necessary to take this characteristic into account. The novelty of this paper consists in the
analysis of a washing machine dynamics considering the uncertainty in the unbalance. Therefore, a
stochastic model is proposed for the dynamics of a washing machine. The steady state solutions are
calculated using the shooting method combined with a sequential continuation to evaluate it across
all the spin speeds of the machine. The probability distributions of the washing machine vibration
at those different spin speeds are approximated using Monte Carlo simulations. The impact of the
random unbalance in the vibration amplitude of the washing machine is also investigated.
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1 Introduction

Washing machines can be divided in two main categories: vertical or horizontal axis washing
machines. An illustrative drawing of a vertical washing machine is presented in the Fig. 1, where
its main components are highlighted. When considering the dynamics of washing machines, the
analysis is usually restricted to a particular assemble of components called Washing Group (WG).
A WG is composed by a hydraulic balancer, a drum, a tank and a drivetrain, and it is connected
through a hang-suspension system to the cabinet of the washing machine.

This paper deals with the stochastic nonlinear dynamics [3] of a WG during centrifuge stage.
When analyzing the dynamics of a WG, the random nature of the unbalance mass of clothes adds
some significant difficulty. At each new washing cycle, the pieces of clothes move randomly during
the washing phase and therefore become unevenly distributed around the drum during centrifuge.
This uneven distribution generates a random unbalance mass, and therefore, must be incorporated
in the model as random variables. Surprisingly, as far as the authors know, all the publications
about the dynamics of vertical axis washing machines have considered the unbalance mass as a
deterministic quantity, which is unrealistic.

In this paper, the main contribution consists in analyze the dynamics of a WG using a stochastic
model [4], so that the random nature of the unbalance is taken into account. With this analysis, it
is possible to investigate the impact of the uncertain unbalance in the dynamics of the WG, which
is crucial to improve the reliability of new components during product development. The dynamics
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Figure 1: Illustration of a hang-suspension vertical axis washing machine. Fonte: [7].

of this stochastic model is analyzed in here through the computation of probability distributions of
the WG’s vibration (peak-to-peak amplitude) at different spin speeds. From those distributions of
vibration levels, which considers the uncertainty in the unbalance parameters, it becomes possible
to, for example, have a more precise procedure to evaluate the fatigue damage of the components.
Also, it allows a proper set of gaps in the product to avoid possible impacts between the WG and
the washing machine cabinet during centrifuge.

2 Equation of Motion

The equation of motion applied here to describe the WG dynamics was first presented by [2], and
it was derived using a Lagrangian approach. In this model, it is assumed that all the components
of the WG are rigid bodies, that the upper joints of the suspension system can not translate with
respect to an inertial frame, and the suspension rods can not spin. Also, the inertial forces of
the suspension’s rods are neglected because of their small masses. Since this model describes the
WG dynamics during centrifuge, it is assumed that all water from the washing phase have been
drained out, leaving in the drum only wet clothes. A additional simplification of constant inertial
parameter for the clothes are used.

To evaluate the equation of motion, two reference frames were used: X,Y,Z,., which is an
inertial frame fixed to the ground, and XY}, 7, which is a local frame embedded in the tank. The
X, and Y}, axes are located in the plane that crosses all the lower spherical joints, and the Z; axis
is equal to the axis of rotation of the drum with respect to the tank. Both frames are schematically
presented in Fig. 2.

2.1 Deterministic Model

Following the model proposed by [2], the equation of motion of the WG can be written as

Wwa
oq ’

(M+AM)§ =

T
5 8qq] q-Mg+F(0,0) +Q+L—
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Figure 2: Schematic representation of the global and local frames. Characterization of the random
unbalance through two random variables H, and M,. Fonte:[7].

where q = [l’ y z a f fy]T € R corresponds to the vector of generalized coordinates and
it defines the position and orientation of the local frame with respect to the inertial frame. The
matrices AM and M € R®%6 correspond to the mass matrix of the hydraulic balancer and the
mass matrix of the rest of the WG’s components, respectively. The vector F (9, 0) € RS collects all
the terms related to the spin speed 6 and spin acceleration g of the drum. Vectors Q and L € RS
represent the generalized forces from the suspension system and from the hydraulic balancer,
respectively. At last, Viy¢ represents the gravitational potential energy of the system. Any dot
superscript represents a time derivative. Interested readers should resort for [1] and [2] for the
complete derivation of this equation of motion.

2.2 Stochastic Model

In order to incorporate the random unbalance mass into the model, two continuous, uniform
and independent random variables are first defined as:

U ~ U5, 1.5 (kg) 2)

where U is the random variable that defines the uncertain mass of the unbalance and H is the
random variable that defines to height of the unbalance mass with respect to X;Y; plane. The
intervals for both uniform distributions were defined from experience and experimental observations
of a global major manufacturer.

Details of how to derive the stochastic model of the WG including the effects of the random
unbalance can be found in [7]. It is given by the following equation of motion:

M+ AM+M,) 4 = fr (q,4,0,0,0,U,H) , (4)

M~ (q,0,U,H)

where q is a random response for the washing machines dynamics since it depends directly on the
random variable of the unbalance, Y and H. It consists in a nonautonomous mechanical system
since 6 is a known function of time.
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3 Steady State Response

The steady state response of the WG vibration is now calculated. Therefore, the drum spin
speed is considered constant and equals to €, so that it is possible to set § = 0, § = Q and 6 = Q¢
in the equation of motion. The steady state response corresponds to the closed orbit found as the
solution of the following periodic boundary-value problem:

yt) =gt yt), QU,H), for0<t<T
) ’ (5)

y(0) =y(T

where
(1)
t,y(t), QU,H) = - . 6
B (ty() ) [MTl(t,q7U,H)fT(t,q,q,Q,U,H) (©)
is the vector field, y(t) = [q”(t) qT(t)]T is the state of the system, and 7' = %7 is the known
period of the solution. The first line in Eq. (5) represents the same equation of motion defined in
Eq. (4), rewritten in its state space form.

This periodic boundary-value problem can be solved numerically using the Shooting method
[5]. This particular method searches for a specific initial state that, after the equation of motion
is integrated along the known period, returns the system to the same initial state and therefore
closes the orbit. To find this specific initial state, a residual vector R must be first defined as

R(yo) = y(T) = yo, (7)

where yg = y(0) is the specific initial state that represents the unknowns of the problem. Notice
that the final state y(T) also depends on the specific initial state since it is obtained as the solution
of an initial value problem with yq as initial conditions. The solution of the periodic boundary
value problem is found solving R(yg) = 0, which can be done (within some error tolerance) using
the Newton-Raphson solver. To integrate the equation of motion from the initial state to the final
state, the 4th order Runge-Kutta method was used here. The Jacobian matrix %}ZO) required by
the Newton-Raphson method was also computed numerically using a finite difference method.

It is important for the analysis discussed in this paper to evaluate the periodic solution of
the WG vibration for the entire range of spin speeds of the machine. To this end, a sequential
continuation was used [6]. The operational spin speed range was first defined from zero to the
maximum spin speed, so that Q € [0, Qmax]. A discrete set of spin speed values, {Qk}kN‘;O, was then
defined dividing the operational spin speed range into equally spaced intervals, where )} = kQJ"\;—"",
and N is the number of intervals. The Shooting method was then used to solve the periocsiic
boundary-value problem for each of those discrete values of spin speeds, sequentially, from low to
high speeds. The first guessed solution for the periodic solution at a given spin speed ); was set as
the previous known solution at a spin speed €2;_1. The sequential continuation allows the periodic
solutions to be define for the same values of discrete spin speed at every new simulation. This is
an important requirement to evaluate the probability distribution of the WG vibration discussed
in the next section and computed using Monte Carlo simulations. From experience, the sequential
continuation should not face any problem while performing this continuation of periodic solutions
since no bifurcation point is expected.

For each calculated periodic solution, the displacement of the tank was also calculated at two
particular points, the top and bottom position, i.e., s; and s, respectively, as illustrated in Fig. 1.
The top and bottom positions of the tank were chosen because they are common points used
to attach accelerometers during vibration tests. For those two key displacements, s; and sy, the
analysis will be restricted to the peak-to-peak amplitude of the displacement in the X, direction.
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Figure 3: a) and b) represents the steady state response of the washer vibration. c¢) and d) are the
radial displacements of the tank in the top and bottom position. e) and f) are the pk-pk top and bottom
displacements of the tank for different spin speeds. Fonte:[7].

To illustrate this analysis procedure, a periodic solution of the WG computed using the Shooting
method is presented in Fig. 3. For this particular simulation, a sample for of the unbalance mass
and height was used (U = 0.576kg and H = 0.335m). In Fig. 3a, the translation of the local frame
is presented, while its orientation (the Euler’s angle) is presented in Fig. 3b. From this periodic
solution, the displacements at the top and bottom of the tank in the X, direction are presented
in Fig. 3c and Fig. 3d, respectively. Repeating this procedure to all discrete predefined spin
speeds, where the periodic solutions were calculated using the Shooting method and the sequential
continuation, the peak-to-peak amplitude of the top and bottom displacements in the X, direction
can be plotted with respect to the spin speed, as showed by the in Fig. 3e and Fig. 3f. The red
dots represent the peak-to-peak amplitude at 450 RPM. The steady state vibration curve can then
be constructed connecting all the dots.

4 Monte Carlo Simulations

To analyze the probability distribution of the WG dynamics, Monte Carlo simulations were
performed. A total of 10000 simulations were performed to estimate the probabilistic distribution
of the WG vibration. Using all the computed steady state vibration curves, one histogram was
constructed for each discrete spin speed (from 10 to 850 RPM with a 20 RPM increment). To
this end, a total of 430000 periodic solutions of the stochastic model had to be calculated, which
shows the computational cost of this analysis. With the implemented algorithm, a total of 1.15 s
was required, on average, to compute each periodic solution on a personal computer. Figure 4a-f
shows some of those histograms (for 150, 350 and 850 RPM). Figure 4g-h shows the concatenation
of all histograms using color plots, where the dark red represents the highest probability, while the
dark blue represents the lowest.

Tt is possible to notice that the histogram of the top displacements at 150 RPM (Fig. 4a) can
be approximate by a uniform distribution. Meanwhile, all the other histograms with spin speed
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Figure 4: Probability distribution of the WG peak-to-peak vibration at different spin speeds. Fonte:[7].
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above 200 RPM lose their symmetry with respect to the mean. This characteristic is enhanced as
the spin speed increases.

To better understand this changing behavior in the distributions as function of the spin speed,
two scatter plots are presented for two spin speeds, 130 and 850 RPM, as shown in Fig. 5. Both
plots show the vibration amplitude (peak-to-peak) of the top displacement as function of the
unbalance mass and height samples used in the Monte Carlo simulation.

5 Conclusions

From the results, it was observed a changing in the probability distribution of the WG vibration
as function of the spin speed. At high speeds, the distributions became less symmetric. To
better understand these changes in the distributions, a scatter plot of the vibration amplitude
as function of the random variables were created. It was possible to conclude that at low spin
speed, the vibration depends only on the unbalance mass and not on its height. As the spin speed
becomes high, the unbalance height becomes also relevant in the vibration amplitude. At the end,
a convergence analysis of some statistical moments of the vibration levels was conducted, and it
was used to validated the amount of simulation runs used in the Monte Carlo simulation of this

paper.
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