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Abstract. Physics-Informed Neural Networks (PINNs) are machine learning tools that approxi-
mate the solution of general Partial Differential Equations (PDEs) by incorporating them as terms
in the loss/cost function of a Neural Network (NN). However, they can present some difficulties
when the PDEs present multiscale features. To mitigate these issues, we propose an approach to
embed PINNs within the framework of the Multiscale Hybrid-Mixed (MHM) method. In the MHM
method, multiscale basis functions are obtained on a coarse mesh by solving completely independent
local problems. Here, we propose an approach to estimate these multiscale basis functions through
PINN models. Thus, the model is adjusted to generate basis functions, adapting to the structure
and characteristics provided by the local domain. Through numerical validations, we show the
model’s capability to approximate multiscale basis functions for the Poisson problem.
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1 Introduction
In many problems, the analytical solution for a PDE is not available, prompting the need for

numerical methods to approximate this solution, such as Finite Elements (FEM), Finite Differences
(FDM), or Finite Volumes (FVM). When the solution of those problems presents a high variability
in small spatial regions or short periods [1], we say that it has a multiscale behavior. In such cases,
obtaining numerical solutions through standard numerical methods becomes challenging.

Multiscale numerical methods have emerged as an attractive option for dealing with problems
that present multiscale behavior. The Multiscale Hybrid-Mixed (MHM for short) method, intro-
duced in [1], is one of these options. The MHM method arises as a result of a hybrid formulation,
at the continuous level, posed on a coarse partition P of the domain. Then, a decomposition of
the exact solution is obtained in terms of a global problem defined on the skeleton of P and a set
of independent local problems defined within each of the subdomains of P. These local problems’
solutions—which are typically obtained using classical numerical methods applied over a mesh de-
fined within each subdomain of P—are known as multiscale basis functions. Of particular interest
is the fact that the multiscale basis functions can be computed locally through entirely independent
problems. Although the solution of said local problems can be computed in parallel, there is still
a need to solve a linear system for each subdomain.

In recent years, deep learning approaches have emerged as a promising methodology for the
numerical solution of PDEs. Among these approaches are the so-called Physics-Informed Neural
Networks (PINNs) [9]. The central idea behind PINNs is to minimize a functional representing
the residual of the PDE and its initial and boundary conditions. This approach has shown signifi-
cant success across various types of PDEs. Nevertheless, the fact that PINNs do not outperform
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classical numerical methods in the general case [4]—in terms of both computational efficiency and
accuracy—have led to specializations in different aspects [6, 7], including their integration with
decomposition strategies [5]. In particular, the Finite Basis PINN (FBPINN) approach proposed
in [8] tries to tackle the challenge of approximating highly oscillatory solutions. FBPINNs partition
the domain into overlapping subdomains, each of which is associated to a NN trained locally, and
the numerical approximation of the solution is given as a summation over the inference provided
by each of the NNs. FBPINNs are nonetheless dependent on the choice of a window function that
confines each NN to its local subdomain. The selection of such a function is especially challeng-
ing when dealing with high-dimensional problems or irregular and complex boundary conditions,
which limits the direct applicability of the FBPINN approach.

The present work aims to explore a new methodology that integrates established properties of
multiscale numerical methods, such as MHM, into PINNs. Thus, PINNs benefit from the domain
decomposition techniques presented in the MHM method to improve the efficient approximation of
PDEs. The premise is that partitioning the domain into non-overlapping, independent subdomains
mitigates oscillations by confining them in regions of the domain without resorting to a window
function; the price to pay is the computation of a global problem—which is nevertheless much
cheaper than in a classical numerical method—followed by a post-processing that is done in an
embarrassingly parallel way in each of the non-overlapping subdomains. The proposed method-
ology inherits not only some of the mathematical properties from the MHM method in terms of
convergence but also the potential of PINNs to efficiently compute the multiscale basis functions
from the MHM method by enabling a larger number of collocation points and taking advantage of
parallelism. The numerical results show the effective approximation of these basis functions for a
special case of the Poisson problem.

2 PINN-Based MHM
We start by considering the Poisson problem. Let Ω ⊂ Rd, d ∈ {2, 3}, be an open bounded,

polytopal domain with a Lipschitz continuous boundary ∂Ω whose unit outward normal will be
denoted by n. We consider the second-order elliptic problem: Find u ∈ H1(Ω), such that{

−∇ ·A∇u = f in Ω ,

u = 0 on ∂Ω ,
(1)

where f ∈ L2(Ω). Here A ∈ L∞(Ω)d×d is a symmetric positive definite matrix uniformly bounded.
The MHM method is a byproduct of a hybrid formulation that starts at the continuous level and

is posed on a coarse partition. It consists of decomposing the exact solution into local and global
contributions. When discretized, such a characterization decouples local and global problems: the
global formulation turns out to be responsible for the degrees of freedom over the skeleton of the
coarse partition, and the local problems refer to a series of smaller calculations in different, non-
overlapping parts of the domain. By solving these problems, we obtain multiscale basis functions
that capture the behavior of the solution at a finer level of detail. We introduce P, a collection
of open, bounded, disjoint polytopes K, such that Ω = ∪K∈PK. Then, the exact solution u is
characterized with respect to the solutions of both global and local problems.

To present the MHM method we need to introduce two partitions that do not coincide but are
not independent. Considering E as the set of faces within ∂P (also known as the skeleton of P),
we start by discretizing the set of faces E ∈ E . For this, we introduce EH , a partition of E , for
which each E ∈ E may be split into faces F of diameter HF ≤ H := maxF∈EH

HF .
In addition, for each K ∈ P, we introduce a shape regular family of simplicial triangulations

{T K
h }h>0 made up of simplices S ∈ T K

h of diameter hS ≤ h := maxK∈P maxS∈T K
h

hS .
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We define finite element spaces associated to T K
h given as follows

Vh :=
∏

K∈P

Vh(K) where Vh(K) :=
{
vh ∈ C0(K) : vh|S ∈ Pk(S), ∀S ∈ T K

h

}
, (2)

Ṽh :=
∏

K∈P

Ṽh(K) where Ṽh(K) := Vh(K) ∩ L2
0(K) and V0 := P0(Th) , (3)

where P0(Th) denotes the space of constant functions on K ∈ Th and L2
0(K) is the space function

L2(K) with zero mean value functions. We also introduce

Λ := {τ · nK |∂K : τ ∈ H(div,Ω) for all K ∈ P} ,

and from it we define a finite element space associated to EH given as follows

ΛH := {µH ∈ Λ : µH |F ∈ Pℓ(F ), ∀F ∈ EH} with k ≥ ℓ+ d , ℓ ≥ 0, (4)

where Pm(D) stands for the space of polynomials of a total degree less or equal to m ≥ 0 on a
measurable set D ∈ Rd.

Using the spaces (2)-(4), the discrete mappings Th : Λ → Ṽh and T̂h : L2(Ω) → Ṽh read:

• for all µ ∈ Λ, Thµ ∈ Ṽh is the unique solution of∫
K

A∇Thµ · ∇vh = ⟨µ, vh⟩∂K for all vh ∈ Ṽh(K) and K ∈ P ; (5)

• for all q ∈ L2(Ω), T̂hq ∈ Ṽh is the unique solution of∫
K

A∇T̂hq · ∇vh =

∫
K

q vh for all vh ∈ Ṽh(K) and K ∈ P . (6)

where the duality pairing ⟨·, ·⟩∂K denotes the interaction between a function and its dual space
over the space skeleton ∂K. Using the mappings (5)-(6), the standard two-level MHM method
consists of finding (λH , uh

0 ) ∈ ΛH × V0 such that{
⟨µH , ThλH⟩∂P + ⟨µH , uh

0 ⟩∂P = −⟨µH , T̂hf⟩∂P for all µH ∈ ΛH ,

⟨λH , v0⟩∂P = −(f, v0)P for all v0 ∈ V0 .
(7)

So, the approximate solution is given by

uHh = uh
0 + ThλH + T̂hf . (8)

Th and T̂h in (5)-(6) are discrete versions of the mappings T and T̂ defined by, respectively,{
−∇ · (A∇Tµ) = cK in K,

A∇Tµ · n = µ on ∂K,
(9)

where cK := 1
|K|

∫
∂K

µ. and {
−∇ · (A∇T̂ q) = q − q̄ in K,

A∇T̂ q · n = 0 on ∂K,
(10)

where q̄ = 1
|K|

∫
K
q. The standard one-level MHM method corresponds to solving (7) with Th and

T̂h replaced by T and T̂ .
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Note that there is a similarity between the local problems (9)-(10) and the original problem
(1). In MHM, the differential operator associated with the original problem is typically embedded
within the local problems, not in the global problem.

The PINN-based MHM is a general approach built from the local problem formulation of the
one-level MHM to solve bigger and multiscale problems based on PDEs. Our main goal in this
paper is to validate this methodology for the Poisson problem presented in (1), which is achieved
using a combination of domain decomposition and prediction of multiscale basis functions from
the local problems (9)-(10).

Two neural networks are placed within each subdomain K ∈ P so that the first one learns
the solution of Tλ and the other learns T̂ f , based on the strong formulations (9)-(10). Note that,
although we have two neural networks per subdomain, by dividing the domain into many subdo-
mains, one large optimization problem modelled as a single, “vanilla” PINN—typically demanding
a large number of collocation points—is transformed into many smaller subdomain optimization
problems. In the following, we provide an overview of the PINN-based MHM methodology, which
is summarized in Figure 1.

1. Given a subdomain K ∈ P, we generate a set of collocation points xK
PDE and xK

BC sampled
over the interior of the subdomain K and on the boundary ∂K, respectively. Note that, as
in MHM, the PINN-based MHM can use any type of subdivision, whether conforming or
non-conforming.

2. In the PINN-based MHM methodology, the solution to the problem defined by (10) and (9)
is approximated by the following optimization process: Find θ∗ = argmin

θ
L(θ), with

L(θ) := cPDELPDE(θ) + cBLB(θ) ,

where cB and cPDE are positive weights, LPDE and LB depend on their respective operators.
This loss function has the same form as used when training vanilla PINNs, with the difference
that it will not be computed for the entire domain.
For the loss function of the problem presented in (9), we have LPDE and LB , respectively,

LPDE(θ) :=
1

NPDE

NPDE∑
i=1

(
∇ ·

(
A∇

(
NNµ

(
xK
PDE ; θ

)
+ cK

)))2
,

LB(θ) :=
1

NB

NB∑
i=1

(
n · ∇

(
NNµ

(
xK
BD; θ

))
− µ

)2
,

where NNµ(·; θ) is a function defined from a neural network (parameterized by θ) in each K
and µ ∈ ΛH . For the problem in (10),

LPDE(θ) :=
1

NPDE

NPDE∑
i=1

(
∇ ·

(
A∇

(
NNq

(
xK
PDE ; θ

)))
+ q − q̄

)2
,

LB(θ) =
1

NB

NB∑
i=1

(
n · ∇

(
NNq

(
xK
BD; θ

)) )2
,

where NNq(·; θ) is a function also defined from a neural network in each K and q ∈ L2(Ω). We
impose the (discrete) zero mean value constraint on NNµ(·; θ) and NNq(·; θ) by calculating
their averages over the collocation points, and removing such values of NNµ(·; θ) and NNq(·; θ)
at the end of the process.
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3. Given that TNµ := NNµ(·; θ) and T̂Nq := NNq(·; θ) approach Tµ and T̂ q with precision, the
PINN-based MHM method corresponds to obtaining uN

0 ∈ V0 and λH ∈ ΛH solving (7) with
TNλH and T̂Nf , and approximating the exact solution of (1) by

u ∼ uN
0 + TNλH + T̂Nf. (11)

Figure 1: PINN-based MHM workflow. Source: Authors.

Another interesting aspect in the construction of the partition, in the particular case where
A is homogeneous throughout the domain, is that each subdomain of the mesh is the image of a
reference cell through some smooth diffeomorphism referred to as a geometric mapping (c.f. [3]). As
we are dealing with a simplicial mesh, the geometric transformation can be more straightforwardly
computed by an affine transformation. Therefore, in this particular case TNλ is trained only for
the reference element and not for all K.

3 Numerical Validation
For the model problem (1), we consider f = 8π2sin(2πx)sin(2πy) and the analytical solution

u(x, y) = sin (2πx) sin (2πy).

For all tests, we design a network with 3 hidden layers and in each layer, 50 neurons. The size
of the training data set for the PDE loss is 200 in each subdomain for Tλ and 400 for T̂ f . For Tλ,
where λ represents a basis for space ΛH in practice, we used a dataset of 40 points for each edge
of the subdomain, which gives us 120 points for the considered triangular mesh. Additionally, the
weight values assigned to different loss terms are cPDE = 10e − 6 and cB = 10 for all K ∈ P.
Regarding T̂ f , we used a dataset of 80 points for each edge of the subdomain, i.e., 240 points. The
weight values assigned were cPDE = 10e− 4 and cBD = 1. For both cases we use σ = sin(·) as the
nonlinear activation function for all NNs used in this study and trained for the same number of
optimization epochs (5000 epochs). The optimal values for the weights and biases of the proposed
PINNs are attained using the Adam optimizer with a learning rate of 1e− 4.
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In this first case, we use global meshes based on triangles. We illustrate in Figure 2 a triangular
global mesh with its overlaid solution. In Figures 2(a) and 2(b), we compare the solution provided
by the MHM Standard method, where the basis functions are computed locally, and a solution
for the PINN-based MHM where the basis functions are predicted via PINNs, respectively. The
diagonal plots in Figures 2(c) and 2(d) further illustrate that the PINN-based MHM provides a
good approximation for the basis functions, consequently yielding a similar solution.

(a) Final Solution MHM-
Standard

(b) Final Solution PINN-Based
MHM

(c) Main Diagonal Solution (d) Second Diagonal Solution

Figure 2: Comparison of Standard and PINN-Based MHM (512 elements). Source: Authors

Regarding convergence validation, we let the mesh diameter h tend to 0 and compared the
convergence rates of the standard MHM and PINN-based MHM methods. The results with ℓ = 0
are illustrated in Figure 3, showing the convergence rate O(H2) and O(H1) in L2(Ω) norm and
H1(Th) broken-norm, respectively. It is notable that all errors for the PINN-based MHM method
go to zero, aligning with the theoretical results found in [2] for the standard MHM method.

(a) ∥u− uh∥L2(Ω) (b) ∥u− uh∥H1(Th)

Figure 3: The mesh-based convergence on simplicial elements for ℓ = 0. Source: Authors.
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4 Final considerations
We adapted the techniques proposed in the PINN methodology to predict multiscale basis

functions within the MHM framework. We employed this new methodology to simulate the Poisson
problem. Numerical tests confirm that the PINN-based MHM methodology offers a promising
approach for approximating the multiscale basis functions. It was observed that the error tends
to zero as we refine our global mesh, leveraging the properties of the MHM. As future works,
we intend to study the mathematical properties of the method, extend our validation to highly
oscillatory problems and explore the performance of the parallel version of the PINN-based MHM,
as well as subdomain refinement, to further enhance its accuracy and efficiency. Furthermore, we
saw that the PINN-based MHM methodology can also benefit from how the mesh is constructed.
However, this is a specific case where the data must be identical within the element, as well as the
geometry. Conversely, the function T̂ f itself depends on the function f varying in the domain. In
this case, we employ parameterized PINNs along with parallelization techniques for training.
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