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Abstract. With the advent of Bayesian phylogenetics, Markov chain Monte Carlo (MCMC)
methods became the de facto standard for sampling from distributions on the space of phylo-
genetic trees, or treespace. Treespace is vast and does not admit a canonical representation, posing
difficulties to the development of not only efficient MCMC schemes but also sensitive diagnostics.
In this talk I will detail recent work on the development of validation and diagnostic tools for asses-
sing the output of phylogenetic MCMC. The talk will cover theoretical/combinatorial results on the
lumpability of tree-valued processes as well as empirical/methodological work on simulation-based
validation of MCMC samplers.
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1 Background

In Bayesian phylogenetics one is usually interested in computing the posterior distribution

p(t, b,θ|D) =
f(D|t, b,θ)π(t, b,θ)∑

ti∈F
∫
B

∫
Θ
f(D|ti, bi,θ)π(ti, bi,θ)dθdbi

, (1)

where D is observed data and t ∈ F is a fully-ranked tree topology associated set of branch
lengths b. Finally θ is a set of parameters such as substitution model parameters, migration rates,
heritability coefficients, etc. The summation in the denominator of (1) is usually taken over a
huge set of trees – for n = 53 leaves there are ≈ 1080 possible trees. In many applications, the
aim is to construct time-calibrated phylogenies, i.e. phylogenetic trees whose branch lengths are
measured in units of calendar time. In particular, one might have sequences sampled through
time (heterochronous/serially-sampled) which enable direct estimation of the rate of evolution
and reconstruction of past population dynamics [5, 6]. These types of data sets pose additional
challenges to inference because they impose constraints2 on the space of valid trees [9]. A crucial
insight is that for phylogenetics one needs to check for convergence in treespace as well, rather
than rely on convergence in the space of continuous parameters (θ and b). See Brusselmans et
al [4] for a thorough discussion.

2 Assessing correctness

We now discuss both exact and simulation-based diagnostics to ascertain whether a given
MCMC algorithm produces (approximately) correct samples from the target p.

1luiz.fagundes@fgv.br
2More specifically temporal precedence constraints.
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2.1 Analytical results
In this section we detail some exact results about phylogenetic distributions that can be used to

check correctness of phylogenetic MCMC algorithms. We start by describing the special properties
of the so-called exchangeable distributions on trees.

2.1.1 Exchangeable phylogenetic distributions and their binary projections

One way to cope with the vastness of treespace is to project down to lower dimensions. A
natural such projection is the so-called clade. A clade is a partition of the set of leaves and two
clades A = A1|A2 and B = B1|B2 are said to be compatible if at least one of Ai ∩Bj , i, j = 1, 2 is
empty. Let Cn be the space of all possible clades and let C : T n → Cn be a function that outputs
the constituent clades of a given tree. Define the indicator Ic(T ) : T n → {0, 1} such that

Ic(T ) =

{
1, c ∈ C(T )
0, otherwise,

(2)

and let Xc = Ic(T ) for T ∼ F and F a distribution on T n. It turns out that for exchangeable
distributions on the space of trees (see [1]) one can compute the marginal probability of each clade
exactly ([12, 13]).

For clades A,B ∈ Cn, the correlation between the clade indicators XA and XB is

ρn(A,B) =
pn(A,B)− pn(A)pn(B)√

pn(A)[1− pn(A)]pn(B)[1− pn(B)]
. (3)

We can now define the clade correlation matrix, Ξn, as the matrix whose (i, j) entry is ρn(Ci, Cj),
i, j = 1, 2, . . . , |Cn|. Code for computing marginal and joint probabilities as well as correlations
using Theorem 4.5 in [12] is provided at https://github.com/maxbiostat/cladeCorrelation.

We now give a few results concerning the properties of Ξn. Let c(n) be the proportion of entries
in the clade correlation matrix that are positive.

Proposition 2.1 (Minimum and maximum correlation). For n ≥ 4, the minimum and
maximum values for ρn(A,B) are, respectively

ρmin(n) = − 2

3n− 5
, (4)

ρmax(n) =
2u(n)k(n)− 4n2(n− 1)

2n(n− 1)
√[⌊

n
2

⌋ (⌊
n
2

⌋
+ 1

)
k(n)− 2n

] [⌈
n
2

⌉ (⌈
n
2

⌉
+ 1

)
k(n)− 2n

] , (5)

whence

u(n) :=
⌊n
2

⌋(⌊n
2

⌋
+ 1

)⌈n
2

⌉(⌈n
2

⌉
+ 1

)
=

{
n2(n+2)2

16 , n is even,
(n−1)(n+1)2(n+3)

16 , n is odd,

k(n) :=

(
n⌊
n
2

⌋) =

(
n⌈
n
2

⌉).
Proposition 2.2 (Sparsity of exchangeable priors). The following facts imply that the ex-
changeable PDA prior induces a “flat” correlation matrix as n grows:

i) limn→∞ ρmin(n) = 0;

ii) limn→∞ c(n) = 0.

Additionally, limn→∞ ρmax(n) = 1/4.
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2.1.2 Simulation-based calibration

The results in the last section rely on sampling from a measure that is uniform on Tn, which is
unrealistic – even though the results remain valuable as a first correcntess check. To remedy this
limitation, one can employ the so-called simulation-based calibration (SBC) [10]. The approach
consists of exploiting the fact that if the sampler is correct, simulating data from the hierarchical
model implied by the prior and the likelihood will lead to a replicate-averaged posterior (RAP)
that should match the target posterior p(θ | y). See Figure 1 and Mendes et al. [8] for more details.

The main idea is as follows

0. Generate a reference tree from the prior τ̄0 ∼ π(τ |γ);
for each iteration in 1:N, do:

1. Generate τ̄ ∼ π(τ |γ);

2. Compute the distance δ̄ = dσ(τ̄ , τ̄0) according to the metric of choice;

3. Generate some (aligment) data y ∼ p(y|τ̄ ,α);

4. Compute the posterior π(τ |y) and draw τ s = {τ (1)s , τ
(2)
s , . . . , τ

(L)
s } from it;

5. Compute distances δs = {δ1, δ2, . . . , δL} with δi = dσ(τi, τ̄0);

6. Compute the rank r(δs, δ̄) =
L∑

i=1

I(δi < δ̄).

and then we may check the distribution of the ranks for uniformity [10].

3 Measuring performance
One way in which performance can be measured by estimating the effective sample size. To

begin, we consider estimators of univariate ESS, for each clade indicator. We assume the process
is a Markov chain consider a reparametrisation of the Markov chain (Xi)i≥0 in terms of the mar-
ginal success probability p and a transition probability α which controls the “flipping rate” of the
chain. The autocorrelation in a two-state Markov chain can also be written in closed-form, which
enables closed-form computation of the effective sample size (ESS). First, recall that under the
reparametrisation considered here, Cor(X(t)

i , X
(t+k)
i ) = (1− α/p)

k. Next, consider the expression
for the effective sample size for a sample of size M :

ESS =
M

1 + 2
∑∞

t=1 ρt
,

=
M

1 + 2p−α
α

,

=
α

2p− α
M. (6)

Under independent sampling, we have α = p and thus ESS = M , as expected. See Proposition 4.1
and Figure 2 for a justification of this parametric choice.

Magee et al. [7] point out that trees are fundamentally multivariate objects. Thus, a more
appropriate summary might be the multivariate effective sample size (mESS):

mESS = M

(
det(Λ)

det(Σ)

)1/p

, (7)
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Figura 1: Patterns observable after inference in rank-uniformity validation (RUV). We explain how
to interpret the histogram of ranks (middle column) and ECDF plots (right-hand side column) in
the main text. (a) Model implementation is correct. (b) Parameter estimates are overdispersed
relative to their true values. (c) Parameter estimates are underdispersed relative to their true
values. (d) Parameter estimates are consistently overestimated relative to their true values. In
the left-hand side column, the prior and replicate-averaged posterior (also known as the data-
averaged posterior) distributions over some parameter θ are shown in light blue and dark blue,
respectively. In the middle graphs, light-blue bands represent the 95%-confidence interval about
the expected rank count, and horizontal black lines mark the rank count mean. Light-blue ellipses
in the rightmost graphs represent confidence intervals about the empirical cumulative distribution
function (ECDF).

where Λ is the covariance matrix of the binary indicators, which depends on the (pushforward)
target distribution and Σ is the long-term covariance matrix, which depends on the sampling effici-
ency of the chosen algorithm. The advantage of employing exchangeable phylogenetic distributions
in this context is that Λ does not need to be estimated from the data but can instead be exactly
computed with a straightforward modification of (3). The long-run covariance matrix Σ must be
estimated, which is usually done using batch means or the lugsail estimator – see [11].
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4 Tree-valued Markov chains: lazy Metropolis-Hastings
In the talk I will show results from a few simulated and real-world examples, all pertaining to

the coalescent family of prior measures (which are a subset of PDA models). Here I will describe
only a simple toy model that permits greater control over sampling efficiency on treespace and
thus allows one to study the effectiveness of the proposed projection techniques.

For t ∈ Tn let N(t) be the set of all trees u ∈ Tn which are on subtree prune-and-regraft
operation away from t. Define a(x) := 1−

∑
z∈N(x)

1
|N(x)| min

{
1, |N(x)|

|N(z)|

}
.

pMH(x, y) =


1

|N(x)| min
{
1, |N(x)|

|N(y)|

}
, y ∈ N(x),

a(x), y = x

0, y /∈ N(x).

The invariant distribution is
π(t) = 1/|Tn|, ∀t ∈ Tn.

We can (artificially) change the mixing of the original MH by adding a probability ρ ∈ (0, 1) of
staying in the same place. The new transition matrix is

P Lazy(ρ) = (1− ρ)PMH + ρI |Tn|.

This process targets the same invariant distribution as the original MH. Data from a comprehensive
simulation study can be found in https://doi.org/10.5281/zenodo.8168349

Definition 4.1 (Lumpability). Let (Xk)k≥0 be Markov chain on a finite state-space S = {e1, e2, . . . , er}
with initial distribution µ0 and matrix of transition probabilities P . We say (Xk)k≥0 is lumpable
with respect to a partition of S̄ = {E1, E2, . . . , Ev} of the state space if a new chain on S̄ induced
by (Xk)k≥0, (Yk)k≥0, is also a Markov chain for any µ0.

Definition 4.2 (Lumping error and ϵ-lumpability ). Consider again a partition S̄ = {E1, . . . , EK}
of S. For x, y ∈ Ei, define the lumping error as

R(x, y) =
∑
z∈Ej

p(x, z)−
∑
z∈Ej

p(y, z). (8)

When |R(x, y)| ≤ ϵ for every pair x, y and every Ej, j ̸= i, we say the Markov chain is ϵ-almost
lumpable with respect to S̄ [3].

Proposition 4.1 (Bounds for the lumping error in the Metropolis-Hastings SPR ran-
dom walk). Consider a random walk as in (4). Then, for all x, y ∈ S1(c) and for all n ≥ 4, we
have for |c| ≥ 3.

ε(S1(c), S0(c)) =
hn,|c|

3n2 − 2|c|2 + 2|c|n− 15n+ 16
−

5gn,|c|

6(4(n− 2)2 − 2
∑n−2

j=1 ⌊log2(j + 1)⌋)
,

where

hn,|c| = −8|c|2 + 8|c|n+ 6|c| − 8n− 2

gn,|c| = −8|c|2 + 8|c|n− 2(n− 3)(|c| − 1) + 6|c| − 8n− 2 ,

and for |c| = 2

ε(S1(c), S0(c)) =
8n− 22

3n2 − 11n+ 8
− 5(6n− 16)

6(4(n− 2)2 − 2
∑n−2

j=1 ⌊log2(j + 1)⌋)
.
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See Alves, Saporito and Carvalho [2] for a detailed analysis of lumpability in tree-valued Markov
processes.

Proposition 4.1 explains why the projected chain strongly resembles a two-state Markov chain
for many chains, as shown in Figure 2.
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Figura 2: Autocorrelation spectra of clade indicators for the lazy Metropolis-Hastings.
We show the empirical autocorrelation spectra up to lag k = 50 (black bars) for indicators of clades
{t1, t2} and {t1, t2, t3} when sampling from a lazy Metropolis-Hastings with ρ = 0.9 on a single
realisation. The autocorrelation function of the best-fitting two-state Markov chain is also shown
(red line).

5 Final Remarks

In this note we have given an overview of modern developments in diagnostics for MCMC in
phylogenetic applications. We have discussed how to use analytical and simulation-based tech-
niques to ascertain correctness of a sampler. We have also given theoretical results that bound
the lumping error when projecting a tree-valued Markov chain onto the space of clade indicators,
providing justification for using a two-state Markov chain estimator for the effective sample size.
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