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1 Introduction

In this paper we describe and compare some sparse inverse approximate preconditioners for
general matrices. We focus on Krylov subspace methods based on approximate inverse precon-
ditioning (AINVP) for the iterative solution of Ax = b, where A ∈ Rn×n is supposed to be
nonsingular and x, b ∈ Rn.

In this work approximate inverse preconditioners [4, 19] are matrices that approximate the
inverse of the original matrix A, and the new system reads

MAx = Mb, M ≈ A−1. (1)

Equation (1) describes the action of a left preconditioner. The action of a right preconditioner
can be formulated in a similar way as AMy = b, with x = My.

The preconditioners based on incomplete LU factorizations have been losing their importance
due to their intrinsic difficulty to run on parallel machines [17]. AINVP methods are highly
parallelizable as they are applied through a simple matrix-vector multiplication, so they can
become natural substitutes of the ILU alternatives; however, even if A is sparse its inverse
can be dense, which is a major concern. Consequently, our goal is to study approximate inverse
preconditioners that have a fair compromise between parallelization and memory usage. Another
compelling point is the parallel construction of this class of preconditioners.

This article is a computational comparison of some preconditioners alternatives based on
approximations of inverse [3, 4, 7, 8, 9, 10, 13, 14]. We have implemented sequential codes, in
Matlab and/or C and tested these codes by solving some academic problems.

This report is organized as follows. In section 2 we discuss the general background of this
study through the analysis of three families of approximate inverse preconditioners. Section 3
has numerical experiments and discussions about them. Finally we draw some conclusions and
future work in section 4.
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2 Overview of approximate inverse methods

Following [4] we consider two categories of preconditioners: (a) approximate inverse methods
based on Frobenius norm minimization, and (b) factorized approximate inverses. For a broader
overview of these methods, we suggest [4] and [19, p. 298].

2.1 Methods based on Frobenius norm minimization

The basic idea of this class of approximate inverse techniques is to compute the preconditioner
M ≈ A−1 as the solution of the following problem:

min
M∈S

‖I −AM‖2F ,

where S is a set of sparse matrices and ‖·‖F denotes the Frobenius norm. Note that

‖I −AM‖2F =

n∑
j=1

‖ej −Amj‖22,

where ej and mj denotes the j−th columns of the identity matrix and M , respectively. So the
computation of M is reduced to n independent problems constrained to S, i.e.,

min
mj

‖ej −Amj‖2F . (2)

Given a sparsity pattern G ⊆ {(i, j)|1 ≤ i, j ≤ n}, we define S as the set of all real n × n
matrices with nonzero pattern contained in G, i.e., S = {M ∈ Rn×n : mij = 0 ∀(i, j) ∈ G}. In
this case, the nonzero entries in a column mj can be computed by solving a small least squares
problem considering just the possible nonzero entries of M .

For general matrices it is hard to prescribe a good nonzero pattern. An alternative is to use
an adaptive strategy that starts with a naive initial guess (e.g., a diagonal pattern) which is
successively modified until ‖ej −Amj‖ < TOL (where TOL is a given tolerance) or a maximum
number of nonzeros in mj is reached.

One of the most successful approaches to the Frobenius norm formulation is the SPAI
preconditioner proposed by Grote and Huckle [13]. The serial cost of computing and the storage
requirements of SPAI preconditioner can be high. So, aiming to mitigate these problems, Chow
and Saad proposed the Minimal Residual (MR) algorithm which uses a few steps of minimal
residual-type method [9]. The sparsity of the preconditioner is guaranteed by dropping elements
that are small in magnitudes or by using a given sparsity pattern.

2.2 Factorized sparse approximate inverses

We now consider preconditioners based on incomplete factorizations of A−1. If A = LDU is the
LDU decomposition of A, then A−1 = U−1D−1L−1. The idea is to compute two sparse matrices
Z ≈ U−1 and W ≈ L−T and thus the factorized approximate inverse reads M = ZD−1W T .

In the AINV method proposed by Benzi and Tůma [1, 2, 3], the approximate inverse factors
are calculated using a biconjugation scheme that generates two sets of vectors {zi}ni=1, {wi}ni=1,
which are A-biconjugated. The factors W = [w1, . . . , wn] and Z = [z1, . . . , zn] can be rather
dense, to alleviate this problem elements zij and wij that are smaller than a prescribed threshold
are dropped.

Bru et al [6, 7, 8] proposed an alternative algorithm called NBIF to calculate the factors W
and Z based on the Inverse of Sherman-Morrison (ISM)

(A+ xyt)−1 = A−1 +
A−1xytA−1

1 + ytA−1x
.
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One of interesting features of NBIF is that it gives an approximation of the LDU factorization
and also an approximation of the inverse factors L−1 and U−1. The drop strategy of the NBIF
algorithm uses the incomplete approximations of both factorizations. Let wik = Wik be the
element of the i−th row and k−th column of the approximate factor W ≈ L−1 and ε a drop
tolerance, then wik is dropped if |wik|‖eTk L̄‖ ≤ ε, where L̄ ≈ L. This coupled drop strategy was
developed by Bollhöfer and Saad [5].

Kolotilina and Yeremim proposed a variation of SPAI known as FSAI to compute the
inverse factors approximation [15, 16]. The idea is define two sets of indices GL and GU such
that

{(i, j)|i < j} ⊆ GL ⊆ {(i, j)|i 6= j} and {(i, j)|i > j} ⊆ GU ⊆ {(i, j)|i 6= j},

which give the sparsity pattern (zero entries) of W ≈ L−1 and Z ≈ U−1. Then factors entries
are calculated using the equations

wij = 0 (i, j) ∈ GL

zij = 0 (i, j) ∈ GU

(WA)ij = δij (i, j) /∈ GL

(AZ)ij = δij (i, j) /∈ GU .

Using these equations, each column of the approximate inverse factors can be calculated
from reduced linear systems following ideas similar to the ones of SPAI method. The precon-
ditioned matrix can be written as WAZD−1, where D = diag(WAZ). The approximate factor
W computed by FSAI method minimizes ||I − ZWLU ||F where L,U are the LU factors of A,
subject to the sparsity patterns GL, GU [16].

3 Numerical experiments

In this section we present the numerical performance of the preconditioners previously described.
We implemented the methods SPAI-S, SPAI-A, AINV and NBIF in C language and MR-A, MR-S
and FSAI in Matlab language. The methods SPAI-S and SPAI-A are implementations of SPAI
method using respectively static and dynamic sparsity parameters, and MR-A, MR-S are their
variations based on the MR approach. We also analyzed the performance of two versions of
the classical incomplete LU factorization preconditioner. The first one controlled by level of
fill-in, ILU(level), and the second based on a dropping strategy, ILUT, both are available in
the Matlab environment, but implemented in FORTRAN [19].

We tested ILU(0) and ILUT(1E − 2). All the computations were done in double precision
on a Dell XPS 14 with CPU Intel Core i5-3337U 1.8GHz and 8GB of memory, the compiler
environment was GNU C/C++ 4.6.3 in Ubuntu Linux.

The experiments that we present regard the solution of a linear system Ax = b using pre-
conditioned GMRES with restart after 30 iterations and initial guess xt = (0, . . . , 0). We compare
the number of iterations demanded by GMRES using each of the preconditioners listed above and
also without any preconditioner. We also report the ratio nnz(M)/nnz(A) between the number
of nonzeros of the preconditioner and the number of nonzero elements in the coefficient matrix
A. The maximum number of nonzeros in the preconditioners was around twice the number of
nonzeros in the coefficient matrix A.

The first experiment is based on a matrix associated with the modeling of three-dimensional
single-phase incompressible flow in porous medium with a seven-point block-centered finite-
difference discretization of the differential operator ∇ ·K∇, imposing Dirichlet boundary con-
ditions. We generated a 12 × 12 “tile” of values for K, as shown in the Figure 1. This tile
is a realization of a stationary log-normal distribution with an anisotropic Gaussian covariance
function (see [18], Section 5.4). Each layer of the field K was then created by the tiling of this
12 × 12 module (upon suitable reflections, in order to maintain smoothness). All layers were
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Figure 1: On the left, the basic 12 × 12 tile used in the experiments with heterogeneous field.
On the right, a composition of 3× 5 such tiles, suitably reflected.

made identical (i.e., K = K(x, y) and not K = K(x, y, z).) The resulting fields were heteroge-
neous (with values varying two orders of magnitude), yet isotropic. The tile and the resulting
5× 3 tiling are shown in Figure 1. The second experiment is based on the discretization of the
operator L(u) = ∇ · (u~v)− ε∆u, related to the convection-diffusion equation.

Table 1 gives, for each matrix A, the order n and the number of nonzeros nnz(A). The
right-hand side of each linear system was computed from the solution vector x∗ of all ones, the
choice used, e.g., in [3, 20]. In all experiments the relative residual |b − Ax|/|b| was less than
1E-07.

ALL INSTANCES n nnz(A)

12× 12× 12 = 123 1728 11232
36× 36× 36 = 363 46656 318816
48× 48× 48 = 483 110592 760320

Table 1: The size of matrix A and its number of nonzero elements for all instances.

In Table 2, we show test results for instances Heterogeneous and Convection-Diffusion. The
most significant improvement in the GMRES iterations among the approximate inverse precondi-
tioners were obtained by the methods AINV and NBIF. The AINV algorithm showed a performance

Heterogeneous Convection-Diffusion

iGMRES nnz(M)/nnz(A) iGMRES nnz(M)/nnz(A)

Method 123 363 483 123 363 483 123 363 483 123 363 483

GMRES 162 > 103 > 103 0.00 0.00 0.00 120 345 419 0.00 0.00 0.00
ILU(O) 12 53 70 1.00 1.00 1.00 11 25 31 1.00 1.00 1.00
ILUT 6 18 22 1.46 1.56 1.65 3 6 7 1.62 1.78 1.80
SPAI-S 24 131 179 1.00 1.00 1.00 23 124 185 1.00 1.00 1.00
SPAI-A 24 123 124 1.13 1.13 0.87 20 68 126 1.45 1.53 1.54
FSAI 23 127 147 1.00 1.00 1.00 17 88 156 1.00 1.00 1.00
MR-S 29 168 225 1.00 1.00 1.00 26 123 185 1.00 1.00 1.00
MR-A 79 > 103 103 1.69 1.61 1.60 28 156 235 1.69 1.61 1.60
AINV 17 102 91 1.42 1.44 1.45 13 38 60 1.42 1.43 1.43
NBIF 17 60 76 1.68 2.07 2.19 12 31 52 1.48 1.54 1.55

Table 2: Results of instances Heterogeneous and Convection-Diffusion with ε = 1.0E − 5.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 1, 2015.

DOI: 10.5540/03.2015.003.01.0097 010097-4 © 2015 SBMAC

http://dx.doi.org/10.5540/03.2015.003.01.0097


0

2

4

6

8

10

12

14

16

0 5 10 15 20

x 10000

CPU time in seconds

SPAI-A

SPAI-S

NBIF

AINV

ILU(O)

N

S
E

C
O

N
D

S 0

100

200

300

0 10 20

x 10000
ILUT

Figure 2: CPU time in seconds in Heterogeneous instance with ε = 1.0E − 05.

similar to NBIF but with a smaller number of nonzero elements (sparser preconditioner). The
best improvement overall was obtained by the classical method ILUT, but its performance should
be balanced by the fact that both ILUT and ILU(0) are essentially sequential in the construc-
tion and application phases which is an undesirable feature in the modern scenario of parallel
heterogeneous architectures.

In our last experiment, we compare the CPU time between the sparse approximate inverse
preconditioners SPAI-A, SPAI-S, AINV and NBIF coded in C language with the ILU(0) and ILUT.
The other approximate inverse methods implemented in Matlab language were not considered
in this experiment due the intrinsic poor performance of the Matlab when dealing with sparse
matrix accessed through its indexes. Figure 2 shows the results. The ILU(0) was extremely
fast while ILUT was the slowest. Despite the calculations of direct and inverse factors, the NBIF

algorithm also presents a very good performance been the third fastest. All preconditioners,
except ILUT, showed linear complexity with respect to the problem size given by the number of
columns in the coefficient matrix A. It is important to note that the quadratic behavior of ILUT
may hinder its usage in applications with large linear systems.
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Figure 3: CPU time in seconds and the ration nnz(M)/nnz(A) between the number of nonzeros
of preconditioner and the number of nonzeros in the coefficient matrix A in the Heterogeneous
instance with ε = 1.0E − 05.

At a first glance the results may suggest that some of the approximate inverse algorithms
could be excluded from future consideration, as their performance were not so good as the best
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methods. However all of the approximate inverse methods have many parameters that could
change their performance. In fact, Figure 3 shows the sensitivity of SPAI-A with respect to
the parameter TOL associated with the stopping criterion. As we can see, the sparsity and
the consequent efficiency of the SPAI-A algorithm are highly sensitive to this parameter. This
sensitivity to parameters is shared by all approximate inverse methods that we have tested. So
it would be premature to conclude a clear superiority of any of the presented methods based
solely on the results of these numerical experiments.

4 Future work

We have compared the performance of several approximate inverse preconditioners for solving
academic problems. We also compared the performance of approximate inverse preconditioners
with standard methods ILU(0) and ILUT. Our results indicate that the factorized versions NBIF
and AINV are the most effective among the approximate inverse preconditioners. Considering
the complexity with respect to the number of columns of the coefficient matrix A, ILUT showed
a quadratic behavior while all other methods behaved linearly. The amount of CPU time
demanded by ILUT was more than one hundred times bigger than the one required by NBIF
and AINV for instance.

Due to the sensitivity to the parameters and the small number of instances, it would be
premature to conclude a definitive superiority of any of the presented preconditioners. In order
to support our conclusions we plan to develop an automatic procedure to identify good values for
these parameters using a tabu search algorithm to explore the large space of parameters [11, 12].
We also plan to test these preconditioners for solving matrices from oil reservoir simulations.

As we target parallel hybrid machines, our next step is to implement parallel versions of
some of these preconditioners using PETSc. In a second moment, we will implement the main
linear algebra kernels of this preconditioners in accelerators as NVIDIA’s GPU and Intel’s Xeon
Phy.
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