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Abstract. We propose and analyze new mixed finite element methods for a regularized µ(I)-
rheology model of granular flows with an equivalent viscosity depending nonlinearly on the pressure
and on the Euclidean norm of the symmetric part of the velocity gradient. To this end, and besides
the velocity, the pressure and the aforementioned strain rate, we introduce a modified stress tensor
that includes the convective term, and the skew-symmetric vorticity, as auxiliary tensor unknowns,
thus yielding a mixed variational formulation within a Banach spaces framework. Then, the pressure
is obtained through an iterative postprocess suggested by the incompressibility condition of the fluid,
which allows us to express this unknown in terms of the aforementioned stress and the velocity. A
fixed-point strategy combined with a solvability result for a class of nonlinear twofold saddle point
operator equations in Banach spaces, are employed to show, along with the classical Banach fixed-
point theorem, the well-posedness of the continuous and discrete formulations. Optimal a priori
error estimates are derived and associated rates of convergence are established. Finally, numerical
results confirming the latter and illustrating the good performance of the method, are reported.

keywords. granular flows, nonlinear viscosity, twofold saddle point, mixed finite elements, fixed-
point theory, a priori error analysis

1 Introduction
Granular flows are present in our daily lives in different scales: dust on the streets, pills in

flasks or in pharmaceutical production lines and sand, that can be found in beaches and as dunes
in deserts, for example.

One of the first attempts to use equations similar to the Navier-Stokes equations for granular
flows was carried out in [11]. It was proposed in [10] that the dissipative nature of granular flows
was due to frictional behavior, and that the frictional coefficient µ of the flow was governed by
the dimensionless inertial number I, that compares the shear and collisional time scales in dense
granular flows.

The major difficulty imposed by the µ(I)-rheology model is the dependence of the dissipative
terms on the pressure of the flow. In other words, the strong non-linearity of the µ(I)-rheology
model prevents us from guaranteeing in advance successful applications of classical numerical meth-
ods, such as primal finite elements and related techniques, which are known to be usually more
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suitable for linear problems, particularly if they are posed within a Hilbertian framework. In this
regard, we find it important to stress that the suitability of Banach spaces-based approaches to
analyze the continuous and discrete solvabilities of diverse nonlinear problems in continuum me-
chanics, including several coupled models, and employing mainly mixed formulations, has been
confirmed by a significant amount of contributions in recent years [3, 5–7].

Furthermore, one of the main advantages of employing a Banach framework is the fact that no
augmentation is required, a common “trick” of Hilbert spaces-based formulations to force them to
become, for instance, elliptic or strongly monotone, and hence the spaces to which the unknowns
belong are the natural ones arising simply from the testing of the equations of the model along
with the use of the Cauchy-Schwarz and Hölder inequalities. In this way, simpler and closer to the
original physical model formulations are derived. In turn, the main benefits of employing a mixed
approach include the derivation of momentum-conservative numerical schemes, and the possibility
of obtaining direct approximations of further variables of physical interest, either by incorporating
them into the formulation, or by employing a postprocessing formula in terms of the remaining
unknowns.

According to the previous discussion, the goal of the present work is to introduce and analyze
mixed finite element methods for numerically solving the steady-state µ(I)-rheology equations for
granular flows, as published in [4].

2 The Mathematical Model
We consider the flow of particles of constant density ρp and diameter d in Ω, denote by u the

velocity of the flow, and assume that the latter is incompressible, so that the overall density is
ρ = ϕρp. The governing equations are given by:

ρ

(
∂u

∂t
+ (∇u)u

)
= div(σ) + ρg in Ω , and div(u) = 0 in Ω . (1)

The stress tensor σ is composed of two terms, a deviatoric one associated to dissipation due to the internal
friction of the medium, which is inspired by a Coulomb friction-like law, and an isotropic one related to
the pressure p on the medium. More precisely, there holds

σ =
√
2µ p

D

|D| − p I in Ω , D :=
1

2

(
∇u+ (∇u)t

)
, |D| =

√
D : D . (2)

where µ is the internal friction coefficient of the granular continuum, and D is the symmetric part of the
velocity gradient. Thanks to the incompressibility condition, there holds tr(D) = div(u) = 0 .

The flows of granular materials based on the µ(I)-rheology approach introduced in [10] arose from the
fundamental hypothesis that the corresponding stresses can be described by a visco-plastic constitutive
equation in which the internal friction µ of the material, which governs the yield stress, depends on the
local properties of the flow through the inertial number I, in the form

µ(I) := µs +

(
µd − µs

I + I0

)
I with I =

√
2 d |D|√
p/ρ

, (3)

where the coefficients µs and µd correspond, respectively, to the static and dynamic friction limits, and I0
is a reference (experimental) constant. Then, substituting (3) in the constitutive relation (2), we arrive at

σ = η(p, |D|)D − p I in Ω , (4)

where
η(ϱ, ω) :=

a1 ϱ

ω + ε
+

a2 ϱ

a3
√
ϱ+ a4 ω + ε

∀ (ϱ, ω) ∈ R+ × R+ . (5)

with 0 < ε ≪ 1 being a regularization parameter and positive coefficients ai, i ∈
{
1, 2, 3, 4

}
, given

by a1 :=
√
2µs , a2 := 2 d(µd − µs) , a3 := ρ−1/2 I0 , and a4 :=

√
2 d . Regarding boundary
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conditions, and knowing that recent evidence [8] suggests that there can be some slip between the grains
and the boundaries, we proceed accordingly and assume this condition for the steady-state regime that we
consider. Then the governing equations of the stationary model are given by

ρ(∇u)u = div
(
η(p, |D|)D

)
−∇p+ ρg in Ω, div(u) = 0 in Ω, u = uD on Γ , (6)

In order to propose a fully-mixed finite element method for (6), we now introduce a modified stress
tensor, still denoted σ, as the further unknown defined by

σ := η(p, |D|)D − p I − ρ (u⊗ u) . (7)

Remembering that that

γ :=
1

2

(
∇u − (∇u)t

)
, (8)

we can reformulate (6) as the equivalently problem: Find D, σ, u, p, and γ in suitable spaces, to be
defined later on, such that

D − ∇u + γ = 0 in Ω , η(p, |D|)D − σd − ρ (u⊗ u)d = 0 in Ω ,

div(σ) + f = 0 in Ω , p = − 1

n
tr
(
σ + ρ (u⊗ u)

)
in Ω , u = uD on Γ .

(9)

3 The Continuous Formulation
Multiplying the equations in (9) by test functions from appropriate Banach function spaces, we derive

the following mixed variational formulation: Given p ∈ L2(Ω), find (D,σ,u,γ)∈ H1 ×H2 ×Q1 ×Q2 such
that ∫

Ω

η(p, |D|)D : E −
∫
Ω

σ : E −ρ

∫
Ω

(u⊗ u) : E = 0 ,

−
∫
Ω

τ : D −
∫
Ω

u · div(τ )−
∫
Ω

τ : γ = −⟨τ ν,uD⟩ ,

−
∫
Ω

v · div(σ)−
∫
Ω

σ : ξ =

∫
Ω

f · v ,

(10)

for all (E, τ ,v, ξ) ∈ H1 ×H2 ×Q1 ×Q2.
We employ a fixed-point approach along with an abstract result on the well-posedness of the afore-

mentioned type of nonlinear operator equations in Banach spaces, to analyze the solvability of the mixed
variational formulation (10), introducing the operator T : Q1 × L2

κ(Ω) −→ Q1 × L2
κ(Ω) defined as

T(z, r) := (u, p) ∀ (z, r) ∈ Q1 × L2
κ(Ω) , (11)

where (D,σ, u⃗) :=
(
D,σ, (u,γ)

)
∈ H1 ×H2 ×Q is the unique solution of the problem arising from (10)

replacing p with r, and one of u with z in the nonlinear term involving u, and p is computed as

p := − 1

n
tr
(
σ + ρ (u⊗ u)

)
+

κ

|Ω| +
ρ

n |Ω|

∫
Ω

tr(u⊗ u) . (12)

Then, it is readily seen that solving (10) is equivalent to finding a fixed point of T, that is (u, p) ∈ Q1×L2
κ(Ω)

such that
T(u, p) = (u, p) . (13)

We prove that the operator T in Eq.(11) is well-defined, for which we make use of an abstract result
establishing sufficient conditions for the well-posedness of a class of twofold saddle point operator equations.
The details are avaliable in [4]. Knowing that T is well-defined, we now address the solvability of the fixed-
point equation (13). We begin the analysis deriving sufficient conditions on T to map a complete metric
subspace of Q1 × L2

κ(Ω) into itself.
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4 The Galerkin Scheme
We introduce the Galerkin scheme for the fully-mixed variational formulation (10), analyze its solv-

ability using a discrete version of the fixed-point approach as employed in Section 3, and derive the
corresponding a priori error estimate.

We begin by letting H1,h, H2,h, Q1,h, and Q2,h be arbitrary finite dimensional subspaces of H1, H2,
Q1, and Q2, respectively, and let Ph := P̃h ⊕

{ κ

|Ω|

}
, where P̃h is a finite dimensional subspace of

L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω
q = 0

}
. If these subspaces satisfy specific hypotheses, we can prove the

solvability of the discrete problem, and derive the Céa estimate for the Galerkin error given by

∥D⃗− D⃗h∥H + ∥p− ph∥0,Ω := ∥D−Dh∥0,Ω + ∥σ − σh∥div4/3;Ω + ∥u⃗− u⃗h∥Q + ∥p− ph∥0,Ω ,

where D⃗ := (D,σ, u⃗) =
(
D,σ, (u,γ)

)
∈ H := H1 × H2 × Q is the unique solution of (10), with, and

D⃗h := (Dh,σh, u⃗h) =
(
Dh,σh, (uh,γh)

)
∈ Hh := H1,h × H2,h × Q1,h × Q2,h is the unique solution of

discrete version of (10), whereas p and ph are computed according to (12) and (12).
We are now in position to establish the main result of this section, that is, we can prove that, with

some conditions, there exists a positive constant C, independent of h, such that

∥D⃗− D⃗h∥H + ∥p− ph∥0,Ω ≤ C dist(D⃗,Hh

)
. (14)

5 Specific Finite Element Subspaces
We make use of the regular family of triangulations

{
Th

}
h>0

of Ω. Given an integer ℓ ≥ 0 and
K ∈ Th, we let Pℓ(K) be the space of polynomials of degree ≤ ℓ defined on K, and denote its vector
and tensor versions by Pℓ(K) := [Pℓ(K)]n and Pℓ(K) = [Pℓ(K)]n×n, respectively. In addition, we let
RTℓ(K) := Pℓ(K)⊕Pℓ(K)x be the local Raviart–Thomas space of order ℓ defined on K, where x stands
for a generic vector in R := Rn. Also, we let bK be the bubble function on K, which is defined as the
product of its n+ 1 barycentric coordinates. Then, we define the local bubble spaces of order ℓ as

Bℓ(K) := curl
(
bK Pℓ(K)

)
if n = 2 , and Bℓ(K) := curl

(
bK Pℓ(K)

)
if n = 3 , (15)

where curl (v) :=
(

∂v
∂x2

,− ∂v
∂x1

)
if n = 2 and v : K → R, and curl (v) := ∇× v if n = 3 and v : K → R3.

Using the global versions of polynomial spaces defined above, we can define two examples of finite-
dimensional subspaces. One example is the Plane Elasticity Element with Reduced Symmetry (PEERS)
of order ℓ ≥ 0, which, denoting C(Ω̄) := [C(Ω̄)]n×n, is given by

H1,h := Pℓ+n(Ω)∩H1 , H̃2,h := RTℓ(Ω)⊕Bℓ(Ω) , Q1,h := Pℓ(Ω) , Q2,h := C(Ω̄)∩Pℓ+1(Ω)∩Q2 , (16)

and Arnold-Falk-Winther (AFW) element of order ℓ ≥ 0, (cf. [2]), given by

H1,h := Pℓ+1(Ω) ∩ H1 , H̃2,h := Pℓ+1(Ω) ∩H(div; Ω) , Q1,h := Pℓ(Ω) , Q2,h := Pℓ(Ω) ∩Q2 . (17)

Then, assuming that there exists r ∈ (0, ℓ+1], such that D ∈ Hr(Ω)∩L2
tr(Ω), σ ∈ Hr(Ω)∩H0(div4/3; Ω),

div(σ) ∈ Wr,4/3(Ω), u ∈ Wr,4(Ω), and γ ∈ Hr(Ω) ∩Q2, we show that there exists a positive constant C,
independent of h, such that:

∥D⃗− D⃗h∥H + ∥p− ph∥0,Ω ≤ C hr
{
∥D∥r,Ω + ∥σ∥r,Ω + ∥div(σ)∥r,4/3;Ω + ∥u∥r,4;Ω + ∥γ∥r,Ω

}
.

6 Numerical Results
We refer to the corresponding sets of finite element subspaces generated by ℓ = {0, 1} as simply

PEERSℓ and AFWℓ based discretizations. The numerical methods have been implemented using the open
source finite element library FEniCS [1]. We solve approximately the nonlinear problem (10) by means
of a strategy combining a Picard iteration with the Newton method. More precisely, the corresponding
computations are described as follows:
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(1) Start solving the Stokes problem with constant viscosity arising from discrete version of (10) by
choosing η = 1 and the overall density ρ = 0 to obtain the initial solution (D0

h,σ
0
h, u⃗

0
h) :=(

D0
h,σ

0
h, (u

0
h,γ

0
h)
)
∈ H1,h ×H2,h ×Qh, compute p0h by

p0h := − 1

n
tr
(
σ0

h + ρ (u0
h ⊗ u0

h)
)
+

κ

|Ω| +
ρ

n |Ω|

∫
Ω

tr(u0
h ⊗ u0

h) ,

and let m = 1.

(2) Set (zh, rh) := (um−1
h , pm−1

h ) and let (Dm
h ,σm

h , u⃗m
h ) :=

(
Dm

h ,σm
h , (um

h ,γm
h )

)
∈ H1,h ×H2,h ×Qh be

the output of a single Newton iteration applied to discrete version of (11).

(3) Update the pressure pmh by employing the formula

pmh := − 1

n
tr
(
σm

h + ρ (um
h ⊗ um

h )
)
+

κ

|Ω| +
ρ

n |Ω|

∫
Ω

tr(um
h ⊗ um

h ) ,

let m = m+ 1, and go to step (2).

The iterative procedure given by steps (2) and (3) is finished when the relative error between two
consecutive iterations of the complete coefficient vector, namely coeffm and coeffm+1, is sufficiently small,
that is, ∥coeffm+1 − coeffm∥DOF/∥coeffm+1∥DOF ≤ tol , where ∥ · ∥DOF stands for the usual Euclidean norm
in RDOF with DOF denoting the total number of degrees of freedom defining the finite element subspaces
H1,h, H̃2,h, Q1,h, and Q2,h (cf. (16)–(17)), and tol is a fixed tolerance chosen as tol = 1E − 06.

The individual errors are denoted by e(D) := ∥D − Dh∥0,Ω , e(σ) := ∥σ − σh∥div4/3;Ω , e(u) := ∥u −
uh∥0,4;Ω , e(γ) := ∥γ − γh∥0,Ω , e(p) := ∥p− ph∥0,Ω , and, as usual, for each ⋆ ∈

{
D,σ,u,γ, p

}
we let r(⋆)

be the experimental rate of convergence given by r(⋆) := log(e(⋆)/ê(⋆))/ log(h/ĥ), where h and ĥ denote
two consecutive meshsizes with errors e and ê, respectively.

Example 1: Convergence Against Smooth Exact Solutions in a 2D Do-
main

In this test we corroborate the rates of convergence in a two-dimensional domain set by the square
Ω = (0, 1)2. We choose the regularization factor ε = 1E − 08, and adjust the datum f in (9) such that the
exact solution is given by

u(x1, x2) =

(
sin(x1) cos(x2)
− cos(x1) sin(x2)

)
and p(x1, x2) = exp(x1 + x2), (18)

where p ∈ L2
κ(Ω), with κ = (exp(1) − 1)2. The results presented in Table 1 indicate that the method

proposed in this work converges with optimal rate to the solution of the problem and that the AFW based
methods seem perform better than the PEERS for this example.

Table 1: Example 1, ℓ = 1: PEERSℓ–based discretization with ℓ = 1. Number of degrees of free-
dom, meshsizes, Newton iteration, errors, and rates of convergence for the mixed approximations.

DOF h it e(D) r(D) e(σ) r(σ) e(u) r(u) e(γ) r(γ) e(p) r(p)
1778 0.354 12 1.80e-02 – 4.59e-02 – 4.59e-03 – 7.45e-03 – 1.84e-02 –
7010 0.177 10 5.36e-03 1.750 1.17e-02 1.970 1.15e-03 1.999 3.12e-03 1.257 4.51e-03 2.031

27842 0.088 8 1.48e-03 1.858 2.98e-03 1.977 2.87e-04 2.001 9.81e-04 1.668 1.12e-03 2.006
97562 0.047 6 4.42e-04 1.922 8.56e-04 1.983 8.15e-05 2.000 3.09e-04 1.840 3.19e-04 1.998

389522 0.024 4 1.14e-04 1.958 2.16e-04 1.990 2.04e-05 2.000 8.16e-05 1.919 8.00e-05 1.997
1081202 0.014 4 4.14e-05 1.977 7.78e-05 1.993 7.34e-06 2.000 3.00e-05 1.957 2.88e-05 1.998
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Table 2: Example 1, ℓ = 1: AFWℓ–based discretization with ℓ = 1. Number of degrees of freedom,
meshsizes, Newton iteration, errors, and rates of convergence for the mixed approximations.

DOF h it e(D) r(D) e(σ) r(σ) e(u) r(u) e(γ) r(γ) e(p) r(p)
1393 0.354 10 2.21e-03 – 2.49e-02 – 4.57e-03 – 2.84e-03 – 1.73e-02 –
5473 0.177 7 5.35e-04 2.046 6.12e-03 2.027 1.15e-03 1.997 7.29e-04 1.963 4.33e-03 1.996
21697 0.088 5 1.32e-04 2.020 1.52e-03 2.013 2.87e-04 1.999 1.84e-04 1.983 1.08e-03 1.999
75961 0.047 4 3.73e-05 2.009 4.29e-04 2.008 8.15e-05 2.000 5.27e-05 1.992 3.08e-04 2.000
303121 0.024 3 9.29e-06 2.007 1.07e-04 2.008 2.04e-05 2.000 1.32e-05 1.997 7.70e-05 2.000
841201 0.014 3 3.34e-06 2.002 3.84e-05 2.002 7.34e-06 2.000 4.76e-06 1.998 2.77e-05 2.000

Example 2: Fluid Flow Through a Cavity 2D With Two Circular Obsta-
cles

Motivated by [9, Section 2.1], we study the behavior of the regularized µ(I)-rheology model of granular
materials for fluid flow through a 2D cavity with two circular obstacles without manufactured solution.
We consider the domain Ω = (0, 1)2 \ Ωc, where

Ωc =
{
(x1, x2) : (x1 − 1/3)2 + (x2 − 1/3)2 < 0.12

}
∪
{
(x1, x2) : (x1 − 2/3)2 + (x2 − 2/3)2 < 0.12

}
,

with boundary Γ, whose part around the circles is given by Γc = ∂Ωc. The model parameters are chosen
as µs = 0.36, µd = 0.91, I0 = 0.73, d = 0.05, ρ = 2500, and the regularization factor is ε = 1E − 03. Notice
that the relation between the diameter of the particles d and the width of the cavity is 1 : 20, whereas the
radius of both circular obstacles is double that of d. The mean value of p is fixed as κ = 100, no presence
of gravity is assumed, that is, f = 0, and the boundaries conditions are

u = (0.2x2 − 0.1, 0)t on Γ \ Γc and u = 0 on Γc .

In particular, we impose that flows cannot go in nor out through Γc, whereas at the top and bottom of
the domain flows are faster in opposite direction. In Figure 1, we display the computed internal friction
coefficient, magnitude of the velocity and symmetric part of the velocity gradient, and pressure field, which
were built using the mixed AFW0-based scheme on a mesh with meshsize h = 0.016 and 18, 423 triangle
elements (actually representing 332, 573 DOF). We observe higher velocities at the top and bottom of the
boundary going to the right and left of the domain, respectively, as we expected, but also a circulation
phenomenon on the left and right boundaries since the flows cannot in nor out through the circle obstacles.
In addition, most of the variations in both the magnitude of the symmetric part of the velocity gradient
tensor and pressure field occur around the circular obstacles. This observation aligns with the results
obtained for the discrete internal friction coefficient. Notice also that between the circle obstacles and in
some parts of the middle of the domain the magnitude of the symmetric part of the velocity gradient is
zero or close to it and hence the granular flows are static. The latter is in agreement with the velocity of
the fluid and it is overcome by the mixed approximation considering the regularized viscosity (5) as it was
described in Section 2.
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Figure 1: [Example 1] Computed internal friction coefficient, magnitude of the velocity and sym-
metric part of the velocity gradient, and pressure field. Figure by the authors
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