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1 Introduction

As it is well known, the interval analysis has become an important tool to tackle
problems whose mathematical models lead to some uncertainty in the parameters, due to
the nature of the problem. Even though it has been much studied in the last decades,
we can see that there is still a wide field to be studied, in this sense we can mention, for
example, the interval functions (functions whose domain and image have interval elements)
which has been little studied due to the difficulty of working with these, if we think about
iterative processes of interval functions, we will see that we have a restricted amount of
tools and techniques to address these, this in comparison with the interval-valued functions
[4, 5, 8]. In this article, it is proposed to approach this problem using the constrained
interval arithmetic (CIA, for short) proposed by Lodwick (see [6]), the same one that has
been used in works like, [2,3,7], and apply this techniques to find the zeros of polynomial
equations using Newton’s method in the interval context.

This paper is organized as follows. In a preliminary section, we will look at some general
aspects of the CIA, and will be given higher-order derivative and derivative concepts for
interval-valued functions. In Section 3, we will proof Taylor’s theorem in their interval
version and from this in Section 4 we present Newton’s method for solving problems
involving the search for zeros of polynomial functions.
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2 Preliminaries

In this section we present some notations to be used throughout the article, and we
hope that the reader will be familiar with the CIA.

We denote by,

I = {[a, a] : a ≤ a, a, a ∈ R}

to set of all compact convex subsets of R, this set will be called interval space. W. Lodwick
in [6] define a linear representation of an interval A = [a, a] as

A = {a+ λ(a− a) : λ ∈ [0, 1])},

where a + λ(a − a) is called the constrained parametric representation associated to the
interval A.

To simplify the notation we will write λ, λ1, λ2, ... to denote the parameters associate
to each interval. So, the constrained parametric representation of an interval A will be
(see [1])

A = [a, a] = {a(λ) = waλ+ a : λ ∈ [0, 1]} = {a(λ) = (a− a)λ+ a : λ ∈ [0, 1]}. (1)

The algebraic operations for CIA are defined as follows. We consider two intervals
A = {a(λ1) : λ1 ∈ [0, 1]} and B = {b(λ2) : λ2 ∈ [0, 1]}, where a(λ1) and b(λ2) are the
constrained parametric representation associated to the intervals A and B, respectively.
Then

A ◦B = C

= [c, c̄]

= {a(λ1) ◦ b(λ2) : λ1, λ2 ∈ [0, 1]}
= {c : c = a(λ1) ◦ b(λ2), λ1, λ2 ∈ [0, 1]}

where c = min {c}, c̄ = max {c}, 0 ≤ λ1 ≤ 1, 0 ≤ λ2 ≤ 1 (2)

and ◦ ∈ {+,−,×,÷}.

It is clear from (2) that constrained interval arithmetic is a constrained global opti-
mization problem.

From CIA [6] we know that, for dependent operations, we consider the same con-
strained parametric representation for the same intervals involved in the algebraic opper-
ations, i.e. A ◦A = {a(λ) ◦ a(λ) : λ ∈ [0, 1]}, where ◦ ∈ {+,−,×,÷}.

Considering the notation used in G. Maqui et.al. [7], we define the next.

Definition 2.1. [1] Let f : R × Rl → R be a function and let c = (c1, ..., cl) ∈ Rl
be parameters involved with f . For each n-uple of intervals Cl, we define a constrained
parametric representation of FCl(x) by

FCl(x) =
{
fc(λ)(x) : fc(λ) : R→ R, c(λ) ∈ Cl

}
. (3)
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Proposition 2.1. [7] Let f : R×Rl → R be a continuous function in the second argument
c ∈ Rl. Then the interval-valued functions FCl : R → I given by expression (3) is well
defined and

FCl(x) =

[
min
λ∈[0,1]l

fc(λ)(x), max
λ∈[0,1]l

fc(λ)(x)

]
, (4)

for all x ∈ R.

Note that if f is continuous in the second argument then the interval-valued function
FCl is well defined and the interval FCl(x) is well defined (characterized) via its constrained
parametric representation (3).

Next we will give a concept of derivative for an interval-valued function. This concept is
based on the differentiability of each element of the constrained parametric representation.

Definition 2.2. [7] Let X ⊂ R be an open set and let FCl : X → I be an interval-valued
function. Suppose that fc(λ) is differentiable at x0 for each λ ∈ [0, 1]l. Then we define the

derivative of FCl at x0, denoted by F
′

Cl(x0), by the constrained parametric representation

F
′

Cl(x0) =
{
f

′

c(λ)(x0) : c(λ) ∈ Cl, λ ∈ [0, 1]l
}
.

We say that FCl is differentiable at x0 ∈ X iff F
′

Cl(x0) ∈ I.

Proposition 2.2. [7] Let X ⊂ R be an open set and let FCl : X → I be an interval-valued
function. Suppose that fc(λ) is differentiable at x0 for each λ ∈ [0, 1]l and f ′c(λ)(x0) is
continuous at λ. Then FCl is differentiable and

F
′

Cl(x0) =

[
min
λ∈[0,1]l

f ′c(λ)(x0) , max
λ∈[0,1]l

f ′c(λ)(x0)

]
. (5)

Analogously, if f
(n)
c(λ)(x0) is continuous in λ. For FCl : X → I, the n-th derivative at x0,

denoted by F
(n)

Cl (x0) is defined by their constrained parametric representation,

F
(n)

Cl (x0) =
{
f
(n)
c(λ)(x0) : c(λ) ∈ Cl, λ ∈ [0, 1]l

}
,

F
(n)

Cl (x0) =

[
min
λ∈[0,1]l

f
(n)
c(λ)(x0) , max

λ∈[0,1]l
f
(n)
c(λ)(x0)

]
.

We say that, the interval valued function FCl is a Cn[a, b] function and we denote this

by FCl ∈ Cn[a, b] if FCl is n times differentiable, and the function F
(n)

Cl : [a, b] → I is
continuous.

For the criterion of stop of the method of Newton it is necessary to define an appropriate
metric, in this sense, we will use the Pompeiu-Hausdorff metric H on I, which is defined
as:

Given the intervals A = [a, a] and B = [b, b],

H(A,B) = max{|a− b|, |a− b|}. (6)
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3 Taylor’s Formula for Interval-Valued Functions

In this section we introduce the Taylor’s theorem for interval-valued functions FCl :
X → I using the constrained interval arithmetic, for this, we consider their respective
constrained parametric representation fc(λ), with c(λ) ∈ Cl.

If we consider, FCl ∈ Cn[a, b], that F
(n+1)

Cl exists on int([a, b]) with their constrained
parametric representation continuous in λ, and x0 ∈ [a, b]. Then, we obtain the constrained
parametric representation of FCl , i.e. fc(λ), c(λ) ∈ Cl, by definition of a Cn[a, b] function,
we obtain all the conditions of the Taylor’s Theorem for the real case. So, for every
x ∈ [a, b], there is a number ξ(x) between x0 and x with

fc(λ)(x) = P(c(λ),n)(x) +R(c(λ),n)(x)

where, the nth Taylor’s polynomial for fc(λ) about x0 is:

P(c(λ),n)(x) = fc(λ)(x0) + f ′c(λ)(x0)(x− x0) + ...+
f
(n)
c(λ)(x0)

n!
(x− x0)n

=
∑n

k=0

f
(k)
c(λ)(x0)

k!
(x− x0)k

and, their Lagrange remainder term associated to Pn(x) is:

R(c(λ),n)(x) =
f
(n+1)
c(λ) (ξ(x))

(n+ 1)!
(x− x0)(n+1).

As the expressions P(c(λ),n)(x) and R(c(λ),n)(x) are continuous in λ then the minimum
and maximum exist, then we obtain

P(Cl,n)(x) =

[
min
λ∈[0,1]l

P(c(λ),n)(x), max
λ∈[0,1]l

P(c(λ),n)(x)

]
(7)

called the nth Taylor interval polynomial associated for FCl about x0, and

R(Cl,n)(x) =

[
min
λ∈[0,1]l

R(c(λ),n)(x), max
λ∈[0,1]l

R(c(λ),n)(x)

]
(8)

is called the Lagrange’s interval remainder function associated to P(Cl,n)(x).
With the expressions (7) and (8),

FCl(x) = P(Cl,n)(x) +R(Cl,n)(x).

Thus, we proved the following theorem.

Theorem 3.1 (Taylor’s Theorem). Suppose FCl ∈ Cn[a, b], that F
(n+1)

Cl exists on int([a, b])
with their constrained parametric representation continuous in λ, and x0 ∈ [a, b]. For every
x ∈ [a, b], there is a number ξ(x) between x0 and x with

FCl(x) = P(Cl,n)(x) +R(Cl,n)(x), (9)

where P(Cl,n) and R(Cl,n) are given in the equations (7) and (8).

The equation (9) represents the Taylor’s polynomial for FCl about x0.
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4 Newton’s method for solution of interval equations

In this section we study the Newton’s method based on Taylor’s polynomials, for this.
Suppose that FCl ∈ C2[a, b]. Let x0 ∈ [a, b] be an approximation to x such that 0 /∈ F ′Cl(x0)
and |x−x0| is small. Consider the first Taylor’s polynomial for FCl(x) expanded about x0
and evaluated at x.

FCl(x) = P(Cl,1)(x) +R(Cl,1)(x),

and their constrained parametric representation is

fc(λ)(x) = fc(λ)(x0) + f ′c(λ)(x0)(x− x0) +
f ′′c(λ)(ξ(x))

2
(x− x0)2,

here ξ(x) is between x and x0, and λ ∈ [0, 1]l.

Since, fc(λ)(x) = 0 for some λ ∈ [0, 1], the last equation gives

0 = fc(λ)(x0) + f ′c(λ)(x0)(x− x0) +
f ′′c(λ)(ξ(x))

2
(x− x0)2.

Is well know that, the Newton’s method is derived by assuming that since |x − x0| is
small, then the term involving (x− x0)2 is much smaller, so:

0 ≈ fc(λ)(x0) + f ′c(λ)(x0)(x− x0).

Solving for x gives

x ≈ x0 −
fc(λ)(x0)

f ′c(λ)(x0)
= x1.

This sets the stage for Newton’s method, which stars with an initial approximation x0
and generates the sequence {xn}∞n=0, by

xn+1 = xn −
fc(λ)(xn)

f ′c(λ)(xn)
for n ≤ 0, λ ∈ [0, 1]l.

Now, if we use the last iterative method, we obtain an expression that depends of λ,
i.e. after the first iteration x1 is an interval. This means that, we need an method for
interval functions FCl : I→ I. The natural extension of the Newton’s method considering
the isotonicity property, is

Xn+1 = Xn −
FCl(Xn)

F ′C1(Xn)
,

where F ′C1 is an interval function.
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Example 4.1. Suppose we wish to find some x ∈ R, such that 0 ∈ FC1(x), with

FC1(x) = [1, 3]x2 − 2x.

Using the constrained parametric representation of FC1, we obtain

fc(λ)(x) = (1 + 2λ)x2 − 2x,

their derivative is

f ′c(λ)(x) = 2(1 + 2λ)x− 2.

Then, for these functions the corresponding natural extension functions are FCl and
F ′C1. Considering x0 = [12 ,

11
5 ], we obtain the next iterative results

n = 1 : Here mλ(X0) = (12 + 17
10λ1)−

(1+2λ2)(
1
2
+ 17

10
λ1)2−2( 12+

17
10
λ1)

2(1+2λ2)(
1
2
+ 17

10
λ1)−2

, then

X1 = [minmλ(X0),maxmλ(X0)],
X1 = [23 , 2.1441].

n = 2 : Here mλ(X1) = mλ(X0)− (1+2λ2)(mλ(X0))2−2(mλ(X0))
2(1+2λ2)(mλ(X0))−2 , then

X2 = [minmλ(X1),maxmλ(X1)],
X2 = [23 , 2.00908].

If it is considered an error less than 0, 15 in the iteration process, then it means that
H(Xn, Xn−1) < 0, 15, and for this example, H(X2, X1) = max{0; 0.13502} < 0, 15, and
finally the all zeros of FC1 are in [23 , 2.00908].

5 Conclusions

In this article, it was established the Newton’s method in the interval context making
use of the constrained interval arithmetic, for this, it was necessary to establish the Taylor’s
Theorem in their interval version, as well as, to establish a stop criterion based on the
Pompeiu-Hausdorff metric for the Interval Newton’s method. An example was presented
to validate the results.
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Matemática Aplicada e Computacional, 2018.

[4] Y. Chalco-Cano, W.A. Lodwick, A. Rufián-Lizana, “Optimality conditions of type
KKT for optimization problem with interval-valued objective function via generalized
derivative”, In: Fuzzy Optimization and decision Making 12, 305–322, 2013.

[5] Y. Chalco-Cano, A. Rufián-Lizana, H. Román-Flores, M.D. Jiménez-Gamero, “Cal-
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