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Abstract. This work addresses the local and global convergence analysis of a variant of the
Levenberg-Marquardt method (LMM), designed for non-linear least-squares problems with non-
zero residue. Such variant, called LMM with singular scaling (LMMSS), allows the so-called LMM
scaling matrix to be singular, which can be useful in certain applications. In order to handle the
non-zero residue while preserving local convergence, a judicious choice of the LMM parameter is
made based on the gradient linearization error which is dictated by non-linearity and residue size.
The main contributions of this work are related to local and global convergence of LMMSS in this
setting. More specifically, we demonstrate that the sequence of directions dk generated by LMMSS
is gradient-related and then prove that limit points of a line-search version of LMMSS are stationary
for the least-squares function. Moreover, the local analysis is further demonstrated under an error
bound condition on the gradient and for different hypotheses on the linearization error.
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1 Introduction
In this paper, we delve into the investigation of the global and local convergence properties of

the Levenberg–Marquardt method applied to a specific non-linear least-squares (NLS) problem:

min
x∈Rn

1

2
∥F (x)∥2 := ϕ(x), (1)

where F : Rn → Rm is twice continuously differentiable. In particular, we focus on the overde-
termined problem, where m ≥ n.

Unlike previous research, which predominantly focused on zero-residue cases or assumed full
rank of the Jacobian [5, 6, 9, 10, 12], we do not make the assumption of a zero residue at a solution
or full rank of the Jacobian at such a point.

We define problem (1) as a non-zero-residue NLS problem if x∗ is a global minimum of ϕ and
F (x∗) ̸= 0. Consequently, our interest lies in identifying the stationary points of ϕ, i.e., the set
X∗ = {x ∈ Rn | J(x)TF (x) = 0}, where J(x) ∈ Rm×n is the Jacobian of F at x, under the
assumption that X∗ ̸= ∅.

While works such as [1, 2] explore problems with non-zero residue, presenting local convergence
of the LM method, the scaling matrix remains the identity matrix. In this work, besides considering
non-zero residue, we consider the following iteration:
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(JT
k Jk + λkL

TL)dk = −JT
k Fk (2)

xk+1 = xk + αkdk, ∀k ≥ 0, (3)

where Fk := F (xk), Jk := J(xk) is the Jacobian of F at xk, {λk} is a positive scalar, {αk} is the
step size, and LTL is called scaling matrix and it is allowed to be singular.

We refer to the iteration (2)–(3) as the Levenberg-Marquardt method with Singular Scaling
(LMMSS). The choice of the scaling matrix as LTL, allowed to be singular, differs from the classic
LMM approach. This strategy is motivated by applications in inverse problems, and it departs
from the results explored for problems with zero residue in [4].

Although the classical theory of the Levenberg-Marquardt method (LMM) is well-established,
the consideration of a singular scaling matrix introduces unique challenges in convergence analysis,
necessitating new theoretical tools and additional assumptions. The study aims to demonstrate
that the convergence of LMM with singular scaling matrices is achievable under reasonable condi-
tions, emphasizing the impact of problem-oriented singular scaling matrices on the quality of ob-
tained approximate solutions. This approach, combined with the consideration of non-zero residue,
diverges from existing literature, providing a new perspective on local and global convergence for
LMM in the presence of singular scaling matrices.

Our study is organized as follows. In Section 2, we start with some assumptions that will
be considered throughout the manuscript and also the mathematical background and preliminary
results necessary for the upcoming sections. Comments concerning the local convergence analysis
and obtained results are presented in Section 3, which are categorized into two cases based on the
behavior of the rank of the Jacobian around a solution (constant and diminishing rank). Finally,
Section 4 proves that, for LMMSS with an Armijo line-search scheme, every limit point of the
generated sequence is a stationary point of the sum-of-squares function, thereby establishing the
global convergence of this method. Our final considerations are provided in Section 5.

We emphasize that this work is only a brief presentation of the complete article [7], in which
the reader can find a more in depth approach of the concepts discussed here, together with proofs
and illustrative examples.

2 Assumptions and auxiliary tools
Our main assumptions are presented next.

Assumption 1. The matrix L ∈ Rp×n is full rank, where m ≥ n ≥ p, and there exist γ > 0 such
that, for every x ∈ Rn

∥J(x)v∥2 + ∥Lv∥2 ≥ γ ∥v∥2 , ∀v ∈ Rn. (4)

Assumption 2. For any x∗ ∈ X∗, there exists a constant δ ∈ (0, 1) and L0 > 0 such that

∥J(x)− J(y)∥ ≤ L0∥x− y∥, (5)

for all x, y ∈ B(x∗, δ).

Assumption 2 asks the Jacobian to be locally Lipschitz and implies:

∥J(y)(x− y)− (F (x)− F (y))∥ ≤ L1∥x− y∥2, ∀x, y ∈ B(x∗, δ) (6)

where L1 = L0/2, that is, the error in the linear approximation of F (x) around y is O(∥x− y∥2),
for x and y in a neighborhood of x∗.
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Due to the compactness of the ball B(x∗, δ), there exist positive constants L2 and β such that
∥J(x)∥ ≤ L2 and ∥F (x)∥ ≤ β for all x ∈ B(x∗, δ). Therefore, since ∥J(x)∥ is bounded in B(x∗, δ),
by applying the mean value inequality, we can infer that ∥F (x) − F (y)∥ ≤ L2∥x − y∥, for all
x, y ∈ B(x∗, δ). Additionally, the gradient ∇ϕ(x) = J(x)TF (x) is Lipschitz in B(x∗, δ):∥∥J(x)TF (x)− J(y)TF (y)

∥∥ ≤ L3∥x− y∥, ∀x, y ∈ B(x∗, δ), (7)

where L3 = L2
2 + βL0.

Moreover, notice that for z ∈ X∗ ∩B(x∗, r) and x, y ∈ B(x∗, r), we have

∥(J(x)− J(y))TF (y)∥ = ∥(J(x)− J(z) + J(z)− J(y))TF (y)∥
≤ ∥(J(x)− J(z))TF (y)∥+ ∥(J(z)− J(y))TF (y)∥
≤ L0L2∥x− z∥∥y − z∥+ ∥J(x)TF (z)∥
+ L0L2∥y − z∥2 + ∥J(y)TF (z)∥.

(8)

Lemma 2.1. [1, Lemma 2.1] If Assumption 2 is satisfied, then there exists a value L4 > 0 such
that ∥∥∇ϕ(y)−∇ϕ(x)− J(x)TJ(x)(y − x)

∥∥ ≤ L4 ∥x− y∥2 +
∥∥(J(x)− J(y))TF (y)

∥∥ , (9)

for all x, y ∈ B(x∗, δ).

Next, we present the hypothesis on the error bound assumed throughout this work.

Assumption 3 (Error bound). For any x∗ ∈ X∗,
∥∥J(x)TF (x)

∥∥ provides an error bound in
B(x∗, δ), i.e., there exists ω ∈ (0,∞) such that

ωdist(x,X∗) ≤
∥∥J(x)TF (x)

∥∥ , ∀x ∈ B(x∗, δ), (10)

where dist(x,X∗) = infz∈X∗ ∥x− z∥. Throughout the text, given x, we shall denote by x̄ an element
of X∗ such that ∥x− x̄∥ = dist(x,X∗).

From Assumptions 3 and (7), we obtain

ωdist(xk, X
∗) ≤

∥∥JT
k Fk

∥∥ ≤ L3dist(xk, X
∗). (11)

The remaining assumptions focus, as outlined in (8), on the terms∥∥J(x)TF (z)
∥∥ and

∥∥J(y)TF (z)
∥∥ .

These terms play a crucial role in controlling the error, as expressed in (9), of the “incomplete
linearization” of the gradient. It is worth noting that each of these assumptions, motivated by [1],
gives rise to distinct convergence rates and corresponding analyses.

Assumption 4. For every x ∈ B(x∗, δ) and every z ∈ X∗ ∩ B(x∗, δ), the following inequality
holds:

∥(J(x)− J(z))TF (z)∥ ≤ θ∥x− z∥,

with 0 ≤ θ < θ̄(ω,L3, λ
∗), where θ(ω,L3, λ

∗) is a positive constant depending on ω from (10), L3

from (7), and the smallest positive eigenvalue of JT
∗ J∗, denoted by λ∗.

Assumption 5. For every x ∈ B(x∗, δ) and every z ∈ X∗ ∩ B(x∗, δ), the following inequality
holds:

∥(J(x)− J(z))TF (z)∥ ≤ C∥x− z∥1+r, (12)

with r ∈]0, 1[ and C ≥ 0.
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Assumption 6. For every x ∈ B(x∗, δ) and every z ∈ X∗ ∩ B(x∗, δ), the following inequality
holds:

∥(J(x)− J(z))TF (z)∥ ≤ K∥x− z∥2, (13)

with K ≥ 0.

In [1], a few simple non-zero-residue examples with two variables are presented, illustrating the
motivation for such assumptions. Furthermore, it is evident that Assumption 6 implies Assump-
tion 5, which in turn implies Assumption 4.

Apart from the above assumptions, a few auxiliary tools are necessary, the main one being
the application of the Generalized Singular Value Decomposition (GSVD) [11]. A particularized
version of the GSVD to the context of this work may be found in [8, p. 22]. This is an important
tool in theoretical analysis because allows the connection, in a single decomposition, of a pair of
unrelated matrices, as is the case with Jacobians of F throughout xk and L.

The following results establish a limit on the step length based on the distance from the current
iteration to the solution set, considering two distinct cases. Lemma 2.2 addresses the scenario where
the rank of the Jacobian around the solution is constant, while Lemma 2.3 deals with the case of
diminishing rank, depending on the definition of the LM sequence λk.

Lemma 2.2. Suppose that Assumptions 1-3 are valid, and rank(J(x)TJ(x)) = rank(J(x∗)TJ(x∗)) =
q ≥ 1 for all x ∈ B(x∗, δ). If xk ∈ B(x∗, δ) and λk := λ(xk) > 0, then there exists c1 > 0 such that

∥dk∥ ≤ c1dist(xk, X
∗). (14)

Lemma 2.3. Suppose that Assumptions 1–2 are valid. For xk ∈ B(x∗, δ) and rank(Jk) = ℓ ≥
rank(J∗) = q ≥ 1, and

(a) Assumption 5 is satisfied with λk =
∥∥JT

k Fk

∥∥r , and r ∈]0, 1[,

(b) Assumption 6 is satisfied with λk =
∥∥JT

k Fk

∥∥,
then there exists c1 > 0 such that ∥dk∥ ≤ c1dist(xk, X

∗).

Remark 2.1. For the scenario where the rank of the Jacobian matrix diminishes, under Assump-
tion 4, the outcome regarding an upper bound on the step length in terms of the distance from the
current iterate to the solution set remains open.

3 Local convergence
Lemmas 2.2 and 2.3 showed that, under specific assumptions, ∥dk∥ ≤ c1 ∥xk − x̄k∥. Such

inequality is key for the local convergence analysis under the error bound condition (Assumption 3).
In this section, we consider the “pure” LMMSS iteration, i.e., (2)–(3) with αk = 1 for every k.

The approach to obtain results concerning the local convergence of the proposed method is
separated into two cases according to whether the Jacobian rank near the solution set is constant
or not and according to the assumption under consideration (Assumption 4, 5 or 6). Due to the
complexity on the explanation and to shorten the exposition, we mention that local quadratic
convergence can be established under Assumption 6, with the Jacobian rank being either constant
or diminishing. Additionally, local superlinear convergence can be obtained under Assumption 5,
again considering constant rank on the Jacobian or not. Under Assumption 4, however, local
linear convergence is proved only for the case in which the rank of the Jacobian matrix remains
constant. Assuming that Assumption 4 is satisfied when the rank is decreasing, i.e., rank(Jk) =
ℓ ≥ rank(J∗) = q ≥ 1, the proof of local convergence is still open.

Again, for a complete explanation and proofs of this results, the reader is directed to [7].
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4 Global convergence
For the analysis of global convergence, we consider Algorithm 1, a version of LMMSS with

line-search for non-zero residue nonlinear least-squares. It is worth to point out that Algorithm 1
differs from the algorithm proposed in [4] in the choice of the LM parameter λk as well as the full
step (αk = 1) acceptance criterion.

Initially, we will demonstrate that the sequence of directions dk generated by Algorithm 1 is
gradient-related (see [3, Proposition 1.2.1]). Subsequently, we will establish that any limit point
of the sequence produced by this algorithm is a stationary point for (1), regardless of the initial
point. This serves to prove the Global Convergence Theorem. Furthermore, in this section, we
assume that Assumption 6 is satisfied to simplify notation and proofs.

We recall the definition of gradient-related directions from [3, Eq. (1.13)]:

Definition 4.1 (Gradient-related). Let {xk} and {dk} be sequences in Rn. The sequence {dk} is
said to be gradient-related to {xk} if, for each subsequence {xk}k∈K (with K ⊆ N) converging to a
non-stationary point of ϕ, the corresponding subsequence {dk}k∈K is bounded and satisfies

lim sup
k→∞, k∈K

∇ϕ(xk)
T dk < 0. (15)

Proposition 4.1. Suppose that Assumptions 1-3, 6, and λk =
∥∥JT

k Fk

∥∥ are satisfied. Let {dk},
{xk} be sequences generated by Algorithm 1. Then, {dk} is gradient-related.

This proposition ensures that Algorithm 1 generates a sequence of directions {dk} that are
gradient-related. Hence, using [3, Proposition 1.2.1], global convergence can be established, as
follows.

Theorem 4.1. Let {xk} be a sequence generated by Algorithm 1. Then, every limit point x̂ of
{xk} is such that ∇ϕ(x̂) = 0.

Proof. Let K1 = {k ∈ N | ∥J(xk+dk)
TF (xk+dk)∥ ≤ ϑ∥J(xk)

TF (xk)∥}. If K1 is infinite, it follows
that ∥J(xk)

TF (xk)∥ → 0, and therefore any limit point x̂ of {xk} is such that J(x̂)TF (x̂) = 0,
hence ∇ϕ(x̂) = 0. Otherwise, if K1 is finite, let us assume, without loss of generality, that
∥J(xk + dk)

TF (xk + dk)∥ > ϑ∥J(xk)
TF (xk)∥, for each k, such that the step size is chosen to

satisfy the Armijo condition. Since, by Proposition 4.1, the directions of Algorithm 1 are gradient-
related, it follows from [3, Proposition 1.2.1] that any limit point x̂ of {xk} is a stationary point
of ϕ.

Now, to connect local and global convergence, the next result establishes that under certain
conditions αk = 1 for all k sufficiently large and then we can apply the local convergence theory
to show that {dist(xk, X

∗)} converges to zero quadratically.

Theorem 4.2. Suppose that Assumption 1-3, 6 are satisfied and λk =
∥∥JT

k Fk

∥∥. Moreover, assume
that the level set Cn := {x ∈ Rn : ϕ(x) ≤ ϕ(x0)} is compact for some x0. Let {xk} be generated
by Algorithm 1, using x0 as the initial point. Then, for every k sufficiently large αk = 1 and the
sequence {dist(xk, X

∗)} converges to 0 quadratically.

Remark 4.1. We observe that in the case of zero residue, a previous result in [12, Theorem
3.1] requires the assumption that the limit point x∗ is such that F (x∗) = 0. Also, in the case of
unconstrained optimization, in order to prove a similar result the required assumption is that the
Hessian at x∗ is positive definite; however, such assumption would imply that x∗ is an isolated
stationary point [3, Proposition 1.2.1]. As we want to address the case of non-zero residue and
possibly non-isolated stationary points, we considered the boundness of the level set instead of these
other two.
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Algorithm 1: LMMSS for problems with non-zero residue with line-search
1 Input: ν, ζ, ϑ ∈ (0, 1), F , J , L, and x0 ∈ Rn

2 Set λ0 = ∥∇ϕ(x0)∥
3 for k = 0, 1, 2, . . . do
4 if ∥∇ϕ(xk)∥ = 0 then
5 Stop with x̄ = xk

6 end
7 Calculate dk = −(JT

k Jk + λkL
TL)−1JT

k Fk

8 if ∥∇ϕ(xk + dk)∥ ≤ ϑ ∥∇ϕ(xk)∥ then
9 αk = 1

10 else
11 Choose m as the smallest non-negative integer such that

ϕ(xk + ζmdk)− ϕ(xk) ≤ νζm∇ϕ(xk)
T dk (16)

Set αk = ζm

12 end
13 Update xk+1 = xk + αkdk
14 λk+1 = ∥∇ϕ(xk+1)∥
15 end

Remark 4.2. In the scenario where Assumption 5 is satisfied with a diminishing rank, is necessary
to adjust the parameter λk of Algorithm 1 to λk =

∥∥JT
k Fk

∥∥r. Furthermore, when this hypothesis
holds, the above results follow with minor changes in some constants, and we can show there
exists k0 such that αk = 1,∀k ≥ k0 and thus dist(xk, X

∗) goes to zero superlinearly. When only
Assumption 4 is satisfied, although the proofs of the Proposition 4.1 and Theorem 4.1 are analogous
(when we consider constant rank), the proof that the full step size αk = 1 is always accepted for
sufficiently large k remains open.

5 Conclusion and future works

Motivated by insights from the article [4], which employs a version of the Levenberg-Marquardt
method with a singular scaling matrix (named LMMSS) for non-linear least-squares problems with
zero residue, we propose a new LMMSS method for problems with non-zero residue. Our study
thoroughly investigated the local and global convergence of the proposed method.

For local convergence, we have shown that local quadratic convergence of dist(xk, X
∗) to zero is

possible, even in the presence of a non-zero residue, with the Jacobian rank being either constant
or diminishing. When the Jacobian rank is constant for x ∈ B(x∗, δ), even considering weaker
assumptions, we manage to establish local linear and superlinear convergence (see Assumption 4
and 5, respectively). However, if only Assumption 4 holds in the case of diminishing rank, local
convergence remains an open question.

Furthermore, we demonstrated the stationary nature of the limit points in the sequence gener-
ated by a line-search version of LMMSS (Algorithm 1). Global convergence was established under
Assumption 6. Unfortunately, when only Assumption 4 is satisfied, in the case of diminishing rank,
the global convergence of the algorithm remains inconclusive.

As future works, apart from tackling these open questions, we aim to conduct computational
experiments to validate our theoretical results as well as to test the algorithm in certain inverse
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problems to assess its practical behaviour.
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