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Abstract. This work studies a three non-linear ordinary differential equation system, depending on
a set of eight parameters, which describes an economic model. The set of parameters are constrained
in order to satisfy the Shilnikov Theorem, this is required when looking for the conditions for the
existence of homoclinic orbits in a three-dimensional autonomous system.
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1 Introduction
Based on the Bouali’s modification [3] of the two-dimensional Van der Pol oscillator [9], Amaral

et al [1] proposed a modified version of the three-dimensional Van der Pol oscillator that takes
into account the macroeconomic variable relationships. Their proposal is based on modifying
the dynamics of the Gross Domestic Product, which is determined by the level of consumption,
financed by household savings and flows of foreign capital. They ended up with a system of ordinary
differential equations of three endogenous variables with eight positive parameters.

A preliminary analysis of stability and the Hopf bifurcation of Bouali’s modification to Van der
Pol’s system was given in [10] and Pribylová [5] made both analytical and numerical analysis of
several types of bifurcations.

In this work, we study the conditions for the existence of homoclinic orbits in the modified Van
der Pol system. Homoclinic orbits are defined as trajectories which arrive at the same singular
point when the time goes to ±∞, or in another words, the curves are connected at the same saddle
point and is required to be a smooth one, i.e. the beginning and the end of the orbit should cross
the same saddle point. We follow Bella et al’s work [2] which describes in detail the steps to know
under what conditions a steady point is connected to itself by a homoclinic orbit.

In Section 2, we present the model, derive its steady state conditions and study the local
dynamics. The third section shows how the parameters are related in order to satisfy the Shilnikov
theorem[7].

2 The Model
The modified Van der Pool ordinary differential equation is given by [1] ẋ = my + px(d− y2)

ẏ = vy + wx+ cz
ż = sx− ry,

(1)
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the set σ = (m, p, d, c, s, r, v, w) of eight parameters modulate the behavior and dynamics of
the system, the set lives inside Σ ≡ R8

++ and they represent the marginal propensity to saving, the
fraction of capitalized profit, the GDP potential, the output-capital ratio, the capital inflow-saving
ratio, the indebtedness factor, the marginal propensity to consume and the proportion of saving,
respectively. The system S in Equation (1) has three steady states, the trivial one, E0 = (0, 0, 0)
and the non-trivial ones E1,2, which are given by

E1 =
(
− rϱ

s
,−ϱ, ϱ

rw + sv

cs

)
= −(x∗, y∗, z∗) = −E2, (2)

where ϱ =
√

d+ ms
pr .

Let us denote by J , the Jacobian matrix of system evaluated at E2. The eigenvalues of J are
the solutions of the characteristic equation

det(λI− J) = λ3 − Tr(J)λ2 + B(J)λ− Det(J) (3)

where I is the identity matrix. Tr(J) and Det(J) are Trace and Determinant of J , respectively.
B(J) is the sum of principal minors of order 2. Explicit values are given bellow

Tr(J) = v − ms

r
, Det(J) = −2scpx∗y∗

B(J) = cr − ms

r
v − w(m− 2px∗y∗). (4)

Where x∗ and y∗ are the steady solutions for x and y in (2). It is straightforward to see that
m − 2px∗y∗ is a negative number. The roots of polynomia in Equation (3) can be obtained by
applying Cardano’s formula and are given by

λ1 = η = γ + φ+
Tr(J)
3

, and λ2,3 = τ ± ωi = −γ + φ

2
+

Tr(J)
3

± γ − φ

2

√
3i (5)

with γ = 3

√
− δ

2 +
√
∆, φ = 3

√
− δ

2 −
√
∆, where

∆ =

(
δ

2

)2

+

(
δ1
3

)3

(6)

is the discriminant. Furthermore,

δ1 =
3B(J)− Tr(J)2

3
and δ = −Det(J)− 2

27
Tr(J)3 +

1

3
Tr(J)B(J). (7)

For this work, let us concentrate at the region Σ1, which is parametrized by

Σ1 =

{
σ ∈ Σ : v ∈ (0,

ms

r
);

cr − w(m− 2px∗y∗)
ms
r

< v

}
. (8)

3 Shilnikov Theorem in the Van der Pool system
In this section we show how the set of parameters in the Van der Pool system in equation (1)

are constrained so that the model satisfies the requirements of the Shilnikov theorem [7]. For a
pedagogical description on Shilnikov’s Theorem, see [8] and for more elegant explanation [4]. We
follow most of the algebraic computations done for the Lucas Model [2].
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Theorem 3.1. Given a third-order autonomous system in Equation (1), let the eigenvalues λ1,2,3

of the Jacobian at the equilibrium point to be the form λ1 = η and λ2,3 = τ ± ωi, with ητ < 0

1. The equilibrium point is a saddle focus and satisfies the saddle quantity SQ ≡ |η| − |τ | > 0

2. There exist a homoclinic Γ0 based at the saddle focus equilibrium point.

The application of the theorem 3.1 to the Van der Pool system requires the following conditions
to be met: i) In the case of hyperbolic saddle-focus equilibrium point, SQ be positive; ii) in the
hyperbolic saddle-focus point, with SQ > 0, there exists a homoclinic orbit, connecting the saddle-
focus to itself. Bellow we show that system S supports the existence of a saddle-focus equilibrium
point with SQ > 0.

For an equilibrium point to be a saddle-focus, the Jacobian matrix J must have a pair of roots
with non-zero imaginary part, i.e. ω ̸= 0. Explicit expressions for roots λ1,2,3 are given in Equation
(5). Moreover, one eigenvalue should be negative η < 0 and the other two with positive real parts
τ > 0, i.e.

η = γ + φ+
Tr(J)
3

< 0 and τ = −γ + φ

2
+

Tr(J)
3

> 0 (9)

and after some computations, the saddle quantity SQ is given by

SQ =
3
2 (γ + φ)

(
2
3Tr(J) +

γ+φ
2

)√(
γ + φ+ Tr(J)

3

)2

+

√(
−γ+φ

2 + Tr(J)
3

)2
(10)

and in order that SQ to be positive, the following conditions must be fulfilled

2

3
Tr(J) +

γ + φ

2
< 0 and γ + φ < 0. (11)

The last inequality in Equation(11) is satisfied for any δ > 03. Moreover, δ ∈
(

2
√
3

9

√
−δ31 ,∞

)
and this fact implies that δ1 is negative in Σ1 given in the Equation (8). Explicit calculation

of δ1 show this argument

3δ1 = 3
(
cr − w(m− 2px∗y∗)−

ms

r
v
)
−

(
v − ms

r

)2

< 0. (12)

where, the first term in the right-hand side is negative inside of Σ1. The region Φ = 0 where both
the discriminant ∆ and the saddle quantity SQ vanishes was computed explicitly in terms of B(J)
and Tr(J) [2]. And, is given by B(J)+Tr2(J) = 0. B(J) and Tr(J) in terms of the set σ are given
in Equation (4). Therefore, the surface Φ = 0 in terms of the set σ is given by

v̂2 − 3
ms

r
v̂ +

(ms

r

)2

+ cr + w

(
m+

2prd

s

)
= 0. (13)

From equation (13), we can see that v̂ admits two values, v̂±. So, we must choose some v such
that

v < v̂− or v > v̂+. (14)

Moreover, from (13) we obtain equation for the c parameter

c =
1

r

{
3ms

r
v̂ −

(ms

r

)2

− v̂2 −
(
m+

2prd

s

)
w

}
. (15)

3Since γ3 + φ3 = (γ + φ)(γ2 − γφ+ φ2) = −δ and γφ > 0
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From ∆ = 0, we conclude that Det(J) = 5
27Tr(J)

3, in terms of the parameters we get

w =

3ms
r v̂ −

(
ms
r

)2 − v̂2 + 5
54

(v̂−ms
r )

3

pd+ms
r

r
s

(
ms
r + 2pd

) . (16)

These facts show that Σ1 ̸= ∅.
Example 1. Consider (m, p, d, c, s, r, w) = (0.02, 0.4, 1.0, 0.5, 10, 0.1, 0.1). From

equation (13) we have v̂− ≈ 0.7758 and v̂+ ≈ 5.2242. Since v̂− < ms
r and cr+w(m+2 prd

s )
ms
r

< v̂−,
(m, p, d, c, s, r, v̂−, w) ⊂ Σ1. Set therefore (m, p, d, c, s, r, v, w) = (0.02, 0.4, 1.0, 0.5, 10,
0.1, 0.05, 0.1). Then

λ1 ≈ −2.0314 and λ2,3 ≈ 0.0407± 0.3413i

with SQ = |η| − |τ | ≈ 1.9907 > 0

Figure 1: The bifurcation surface shows (m, r, v̂−) combinations such that ∆ = 0 = SQ.
Source: Own work

4 Homoclinic Orbits
In the previous section, we set up the region in the parameter space at which E2 is a saddle-

focus equilibrium with positive saddle-quantity, i.e. SQ> 0. The method of the undetermined
coefficients [6] can be used to show that our system in equation (1) admits homoclinic solutions.
The implementation of the method requires to put the system S into an appropriate form to work
with. To do this, let us translate the equilibrium point to the origin, by assuming

x̃ = x− x∗, ỹ = y − y∗, z̃ = z − z∗, (17)
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and let T be a matrix of the eigenvectors associated wit the structure of eigenvalues of J .

JU = τU − ωV, JV = τV + ωU and JZ = ηZ. (18)

Then, it is possible to put the system S in to the following Jordan normal form

Ẇ = T−1JTW +T−1f̃(TW ), (19)

given the associated change in coordinatesx̃
ỹ
z̃

 = T

w1

w2

w3

 , where T = [U, V, Z] (20)

Therefore, we obtain the following systemẇ1

ẇ2

ẇ3

 =

 τ ω 0
−ω τ 0
0 0 η

w1

w2

w3

+

F1(w1, w2, w3)
F2(w1, w2, w3)
F3(w1, w2, w3)

 (21)

with Fi(w1, w2, w3) = Fiaw1w2 + Fibw1w3 + Ficw2w3 + Fidw
2
1 + Fiew

2
2 + Fifw

2
3 and i = 1, 2, 3

The F coefficients are combinations of the original parameters of the model in Equation (1), also
depending on the values of constants c2 and c3 arising when computing the eigenbasis U, V, Z.

Lema 4.1. Denote the set Υ ≡ {σ ∈ Σ1 : v ∈ (0, v̂) such that the system S has a homoclinic orbit}.
Then Υ ̸= ∅

Proof. By using the method of the undetermined coefficients to the system S requires that the
expression

ξ = −F3f

η

4η2 − 4ητ + ω2 + τ2

(2η − τ + ω)F2f + (2η − τ − ω)F1f

(
ζ + ϕ+

N1

9ω4 + τ4 + 10ω2τ2

)
+

N2

4ω2 + (η − 2τ)2
,

(22)

be satisfied for homoclinic solutions to exist. In (22), (ξ, ϕ, ζ) is a triplet of arbitrary constants.
N1 and N2 are given by

N1 = (ϕ2 − ζ2)
{
L1F1a + L2F2a + L3(F1d − F1e) + L4(F2d − F2e)

}
+ 2ϕζ

{
− L3F1a − L4F2a + L1(F1d − F1e) + L2(F2d − F2e)

}
(23)

N2 = (ϕ2 − ζ2)
{
L5F3a + L6(F3d − F3e)

}
+ 2ϕζ

{
− L6F3a + L5(F3d − F3e)

}
with

L1 = − 2ω(3ω2 − τ2) + 4ωτ(ω − τ), L2 = − 2ω(3ω2 − τ2)− 4ωτ(ω + τ), L5 = −2ω

L3 = (τ − ω)(3ω2 − τ2)− 8ω2τ, L4 = (τ + ω)(3ω2 − τ2)− 8ω2τ, L6 = η − 2τ. (24)

The existence of homoclinic loop asymptotic to the saddle-focus equilibrium point requires that
v ∈ (0, v̂), with σ ∈ Σ1, at which (22) is satisfied. Therefore Υ ̸= ∅.

We provide bellow an illustrative example implying the existence of as homoclinic solution of
system in equation (1).

Example 2 Let (m, p, d, c, s, r, w) = (0.02, 0.4, 1.0, 0.5, 10, 0.1, 0.1) as in Example 1.
This choice implies v̂ = 0.7758. Set (c2, c3) = (0.001, 0.2) and assume ϕ = ζ. Then Equation (22)
gives rise to the surface in (ξ, v, ζ) coordinates(see Figure 2)
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Figure 2: Combinations of (ξ, v, ζ) for the family of homoclinic solutions. Source: Own work

5 Final Considerations
This project observed an economic model using dynamics, non-linear equations developing a

dynamic system. The main objective was to identify in it a region with a certain stability by finding
a set of parameters that would stabilize the system. Dynamical systems such as the one presented
in the economic model are characterized by high sensitivity to initial conditions, self-similarity and
fractals. The high sensitivity to initial conditions gives the non-linear system a certain instability,
and this instability in the system out comes in sensitivity to disturbances and errors, generating
results that are not expected. This may be the subject of future work on the project.
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