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The single parity-check (SPC) code is a very popular MDS error detection code, since it is very
easy to implement [5]. One bit is appended to an information sequence of length n− 1, such that
the resultant codeword has an even number of ones. Two SPC codes can be used jointly to obtain
an SPC product code, which has a minimum distance of 4. Therefore, it can recover all erasure
patterns with one, two or three erasures over the erasure channel [3]. However, in some special
cases, patterns of up to 2n − 1 erasures can be corrected. Furthermore, a codeword of length n2

can be represented by an erasure pattern of size n × n, where the only information considered is
the position of the erasures (see for example, Figure 1(a)).

In [5], authors proposed a tight upper bound of the post-decoding erasure rate of the SPC
product code. This approach was based on observing the structure of the erasure patterns, which
makes it possible to classify them into correctable and uncorrectable patterns. The pattern in
Figure 1(a) is uncorrectable, since it is not possible to correct the subpattern in gray. Later, in [1],
the authors performed a counting method to obtain the number of uncorrectable erasure patterns
with 4, 5, 6, 7, 8, 2n − 3, 2n − 2 and 2n − 1 erasures. After that, in [2], the authors represented
each erasure pattern by a bipartite graph with n nodes in each vertex class and the same number
of edges as erasures. In fact, there exists an edge joining two vertices if there is an erasure in
the corresponding position of the equivalent erasure pattern. It is possible to check that patterns
that contain uncorrectable subpatterns are represented by bipartite graphs with cycles (see for
instance Figure 1(b)). Then, the problem of counting uncorrectable erasure patterns can be seen
as a problem of counting bipartite graphs with cycles. At the same time, a bipartite graph can
be represented by a binary matrix where a 1 appears if two vertices of different vertex classes are
connected, that is, the bi-adjacency matrix [4]. In Figure 1(c) one can observe the bi-adjacency
matrix of the graph in Figure 1(b). Thus, the counting problem can be seen as counting binary
matrices with specific properties. In [2], the authors counted binary bi-adjacency matrices of graphs
with cycles to provide a lower and an upper bound on the number of uncorrectable erasure patterns
(bipartite graphs having no vertex of degree 1). Notice that the determination of the exact number
of uncorrectable (or correctable) erasure patterns is an open problem and few results have been
discovered up to now.
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(a) Pattern with 7 erasures
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(b) Bipartite graph


w1 w2 w3 w4

u1 1 1 0 1
u2 0 0 0 0
u3 1 0 0 1
u4 0 1 1 0


(c) Bi-adjacency matrix

Figure 1: Erasure pattern, its bipartite graph and its bi-adjacency matrix. Source: The authors.

Each pattern can be represented by a binary word xxx of length n2 as follows. For i, j = 1, 2, . . . , n,
we have

xn(i−1)+j =

{
1 if there is an erasure in position (i, j) of the pattern,
0 if there is no erasure in position (i, j) of the pattern.

(1)

For instance, the pattern in Figure 1(a), can be represented by [1 1 0 1|0 0 0 0|1 0 0 1|0 1 1 0],
coinciding with the rows of the bi-adjacency matrix. Now, let H be the parity-check matrix of
the SPC product code and consider xxx a word that represents an uncorrectable pattern such that
the positions of the ones are in X . It is possible to prove that the set {hi | i ∈ X} of columns
of H, where hi is the i-th column, is is a linearly dependent set. Moreover, the set {hi | i ̸∈ X}
of columns of H, is is a linearly independent set. This implies that all codewords of C represent
uncorrectable strict patterns. In other words, the number of codewords of weight t is a lower
bound on the number of uncorrectable patterns with t erasures. In this work, we study the weight
enumerator polynomial of the SPC product code to derive bounds on the number of uncorrectable
erasure patterns, thereby investigating the performance of the code.
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