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Abstrac: The main contribution of this paper is concerned with the aggregating fuzzy e-Xor connectives
based on the OWA-operator focusing on the fuzzy e-Xor implication class and related dual construction.
The paper formally states that such aggregation operator preserves the main properties of fuzzy connec-
tives in corresponding classes.
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1 Introduction

In Fuzzy Logic, the “fuzzy exclusive or” (Xor) and its dual construction – the XNor connective are
extensively studied, e.g.[9, 8, 10, 11] and [12], related to applications and basic concepts which are
concerned with knowledge based systems, either from image processing to decision making or from
pattern recognition to machine learning.

By aggregating a family of fuzzy X(N)or connectives making use of the ordered weighted average
aggregation operator (OWA-operator), this paper deals with an extension of fuzzy X(N)or named as the
fundamental class of representable fuzzy subX(N)or and corresponding fuzzy implications.

Triangular sub(co)norms and strong fuzzy negations are introduced in[12] introducing the aggrega-
tion of fuzzy (S,N)- and R-implications by the arithmetic media.

The results achieved in [1, 2] are here extended into a discussion on the fuzzy subXor class, mainly
related to relax boundary conditions in the definition of the fuzzy Xor class. We also investigated under
which conditions such class is preserved by n-ary aggregation functions.

Instances of the fuzzy subXor class are reported but they are restricted to the fuzzy e-subXor con-
nectives, referred as ES,T . Thus, an e-Xor connective is obtained as a difference between a t-subconorm
S and a t-subnorm T . By taking the algebraic sum SP and its mutual dual construction, the product
t-norm TP , the main algebraic properties, dual construction and graphical representation of the ESP ,TP

are discussed.
This paper presents the main results obtained from the OWA-operator performed over a finite family

of e-subXor connectives, introducing the operator EA, called (A, E)-operator. Its dual construction
DA, called (A,D)-operator is also considered including algebraic properties. Additionally, a new fuzzy
sub(co)implication is obtained from the OWA-operator and a finite family in the fuzzy e-subX(N)or
(co)implication class.

This paper is organized as follows. The next section describes the basic concepts of fuzzy connec-
tives. In Section 3, the fuzzy e-Xor connective, dual construction and related e-Xor (co)implication class
are discussed. As our main contribution, Section 4 shows the aggregating fuzzy e-X(N)or connectives
and related (co)implications. Finally, conclusions are drawn in Section 5.
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2 Preliminaries

In this section, basic definitions related to the fuzzy connectives: fuzzy negation and triangular (co)norms
(t-(co)norms) are considered. For that, let U = [0, 1] be the unit interval.

2.1 Fuzzy Negations

A function N : U → U is a fuzzy negation if

N1: N(0) = 1 and N(1) = 0; N2: If x ≥ y then N(x) ≤ N(y), ∀x, y ∈ U .

If N also verifies the involutive property, it is called a strong fuzzy negation (SFN) [6]:

N3: N(N(x)) = x, ∀x ∈ U .

The most usual SFN is NS(x) = 1− x. Additionally, let N be a fuzzy negation on U and f : Un → U
be a real function. The N -dual function of f is given by :

fN (x1, . . . , xn) = N(f(N(x1), . . . , N(xn))). (1)

When N is involutive, (fN )N = f , that is the N -dual function of fN coincides with f . In addition,
if f = fN then it is clear that f is a self-dual function [4].

2.2 Aggregation Operators

In [13, Definition 2], an n-ary aggregation is a functionA : Un → U demanding, for all ~x = (x1, x2, . . . , xn),
~y = (y1, y2, . . . , yn) ∈ Un, the following conditions:

A1: A(~0) = A(0, 0, . . . , 0) = 0 and A(~1) = A(1, 1, . . . , 1) = 1;

A2: If ~x ≤ ~y then A(~x) ≤ A(~y);

A3: A(−→xσ) = A(xσ1 , xσ2 , . . . , xσn) = A(~x) when σ : Nn → Nn is a σ-permutation.

Some extra usual properties for aggregation functions are the following:

A3: Symmetry A(−→xσ) = A(xσ1 , . . . , xσn) = A(~x), for all σ-permutation;

A4: Compensation minni=1(xi) ≤ A(~x) ≤ maxni=1(xi);

A5: Idempotency A(x, x, . . . , x) = x, for all x ∈ U ;

Proposition 1 Let σ : Nn → Nn, with Nn = {1, . . . , n}, be a permutation ordering the elements:
xσ(1) ≤ . . . ≤ xσ(n). Let w1, . . . , wn be non negative weights (wi ≥ 0) such that

∑n
i=1wi = 1. The

operator A : Un → U which is named ordered weighted average aggregation operator (OWA-operator)
and given as

A(~x) =
n∑
i=1

wixσ(i), (2)

verifies property Ak, for k ∈ {3, 4, 5}.

Proof: Straightforward. N

Proposition 2 Let σ : Nn → Nn be a σ-permutation and w1, . . . , wn be non negative weights (wi ≥ 0)
such that

∑n
i=1wi = 1. Then, 0 ≤

∑n
i=1

wi
σ(i) ≤ 1.

Proof: For all xσ(i) ∈ U , it is immediate that 1 =
∑n

i=1wi ≥
∑n

i=1
wi
σ(i) ≥ 0. N
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2.3 Triangular Norms and Conorms

According with [6], a triangular sub(co)norm (t-sub(co)norm) is a binary aggregation function T (S) : U2 →
U such that, for all x, y, z ∈ U , the following holds:

T0: T (x, y) ≤ min(x, y); S0: S(x, y) ≥ max(x, y)

and also verifying the commutativity, associativity and monotonicity properties which are, respectively,
given by the next three expressions:

T1: T (x, y) = T (y, x); S1: S(x, y) = S(y, x);

T2: T (x, T (y, z)) = T (T (x, y), z); S2: S(x, S(y, z)) = S(S(x, y), z);

T3: T (x, z) ≤ T (y, z), if x ≤ y; S3: S(x, z) ≤ S(y, z), if x ≤ y.

Additionally, a triangular (co)norm (t-(co)norm) is -sub(co)norm also satisfying the property:

T4: T (x, 1) = x; S4: S(x, 0) = x.

Proposition 3 For i ≥ 1 and x, y ∈ U , a function Ti (Si) : U2 → U is a t-sub(co)norm given by

Ti(x, y) =
1

i
xy

(
Si(x, y) = 1− 1

i
(1− x− y + xy)

)
. (3)

Proof: Straightforward. N
When i = 1, by Eq.(3)a and Eq.(3)b we obtain the product t-norm and probabilistic sum, which are

mutual NS-dual t-(co)norms, respectively given by

TP (x, y) = xy (SP (x, y) = x+ y − xy) . (4)

3 Fuzzy e-Xor and Dual Construction

This section is based on the X(N)or connective concepts as described in [2].

Definition 1 A function E(D) : U2 → U is a fuzzy subX(N)or if it satisfies, for all x, y ∈ U , the
following properties:

E0(i): E(1, 0)=1; D0(i): D(0, 1)=0;

E1: E(x, y) = E(y, x); D1: D(x, y) = D(y, x);

E2(i): If x ≤ y then E(0, x) ≤ E(0, y); D2(i): If x ≤ y then D(0, x) ≥ D(0, y);

E2(ii): If x ≤ y then E(1, x) ≥ E(1, y); D2(ii): If x ≤ y then D(1, x) ≤ D(y, 1).

Definition 2 A fuzzy subX(N)or satisfying:

E0(ii): E(1, 1)=E(0, 0)=0; (D0(ii): D(1, 1)=D(0, 0)=1)

is called a fuzzy exclusive or (Xor) (fuzzy exclusive nor (XNor)).

Some extra reasonable properties can be considered for the fuzzy Xor connective (see [2] for a more
thorough discussion):

E3: E(x, x) 6= 1;

E4: If E(x, y) = 1 then (x = 1 and y = 0) or (x = 0 and y = 1).
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By considering any fuzzy negation, another generalization of this fuzzy Xor EK is introduced in [1]
and reported below. In [1, Prop. 3.6], when T , S and N are a t-norm, a t-conorm and a fuzzy negation,
respectively, for all x, y ∈ U , the function ES,T (DT,S) : U

2 → U , defined by

ES,T (x, y) = S(x, y)− T (x, y) (DT,S(x, y) = N(N(T (x, y))−N(S(x, y))) (5)

is a fuzzy Xor (XNor) connective called in this paper as fuzzy e-X(N)or connective. Moreover, by [1,
Prop. 3.7], it holds that NES,T

(x) = ES,T (1, x) = N(x).

Proposition 4 [1, Prop. 2] When T = TP , S = SP and N = NS then , for all x, y ∈ U , it holds that

ESP ,TP (x, y) = x+ y − 2xy (DTP ,SP
(x, y) = 1− x− y + 2xy) , ∀x, y ∈ U. (6)

Proposition 5 [1, Prop. 3] The fuzzy e-Xor connective ESP ,TP satisfies E3 and E4.

3.1 Fuzzy e-X(N)or (co)implication class

A fuzzy subimplicator I : U2 → U satisfies the conditions:

I0 : I(1, 1) = I(0, 1) = I(0, 0) = 1;

A fuzzy subimplicator I : U2 → U also satisfying the boundary condition:

I1 : I(1, 0) = 0;

is called fuzzy implicator. And, a fuzzy (sub)implicator I verifying:

I2 : If x ≤ z then I(x, y) ≥ I(z, y) (left antitonicity);

I3 : If y ≤ z then I(x, y) ≤ I(x, z) (right isotonicity);

I4 : I(0, y) = 1 (left boundary property);

is called a fuzzy (sub)implication [?, Def. 6][5].
There exist many classes of (co)implication functions (see, e.g., [3] and [?]). We consider in this

paper the e-Xor (eXNor-coimplication) is studied [2], based on the equivalence of the classical logic:
α→ β ≡ ¬α ∨ (¬α⊕ β).

Let T (S), N and E(D) be a t-(co)norm, a fuzzy negation and a fuzzy Xor (XNor), respectively.
According to [2], the function IS,N,E(JD,T,N ) : U2→U , given by

IE,S,N (x, y) = E(x, S(N(x), N(y))), (JD,T,N (x, y) = D(x, T (N(x), N(y)))) . (7)

is a fuzzy (co)implication, called e-Xor implication (e-XNor coimplication). Moreover, NI : U2 → U ,
NI(x) = I(x, 0) is the fuzzy negation underlying I .

Proposition 6 When S = SP , N = NS and T = TP , ∀x, y ∈ U , then

IESP ,TP
,SP ,NS

(x, y) = 1− x− xy + 2x2y
(
JDTP ,SP

,TP ,NS
(x, y) = y − 2x+ xy + 2x2 − 2x2y

)
(8)

satisfies Ik (Jk) for k ∈ {1, 2, 3}.

4 Aggregating Fuzzy Xor Conectives

Definition 3 [12, Prop. 5.1] The function FA : Uk → U called as (A,F)-operator on U is given by:

FA(x1, . . . , xk) = A(F1(x1, . . . , xk), . . . , Fn(x1, . . . , xk)). (9)
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4.1 Aggregating fuzzy t-subnorms and t-subconorms

Proposition 7 [12, Proposition 6.1] Let A be an n-ary aggregation operator and {T1, T2, . . . .Tn} and
{S1, S2, . . . , Sn} be finite sets of t-subconomrs and t-subnorms both verifying distributivity and general-
ized associativity, respectively. The functions TA,SA : Uk → U called as (A, T )- and (A,S)- operators
on U and given by Eq.(9) are fuzzy t-subnorm and fuzzy t-subconorm, respectively.

4.2 Aggregating Fuzzy e-X(N)or Connectives

In this section, focusing on the fuzzy e-XNor class, a methodology is presented in order to obtain a
new fuzzy e-subX(N)or connective from the OWA-operator and a finite subset of fuzzy e-subX(N)or
connectives.

Proposition 8 The function Ei(Di) : U
2 → U given by:

Ei(x, y) = 1− 1

i
(1− x− y + 2xy)

(
Di(x, y) =

1

i
(1− x− y + 2xy)

)
,∀x, y ∈ U, (10)

whenever i is a rational index such that i ≥ 1, verifies Ek (Dk) for k ∈ {0(i), 1, 2(i), 2(ii), 3, 4, 5}.

Corollary 1 The function Ei(Di) : U
2 → U in Eq. (10)a (Eq. (10)b) is a fuzzy e-subX(N)or connective.

In addition, the family of e-subX(N)or connectives Ei (Di) is referred as E ( D).

Proposition 9 LetA : Un → U be an OWA-operator. For all x, y ∈ U , the function EA(DA) : U2 → U ,
called (A, E)-operator ((A,D)-operator) is given by

EA(x, y) = 1−
n∑
i=1

wi
σ(i)

(1− x− y − 2xy)

(
DA(x, y) =

n∑
i=1

wi
σ(i)

(1− x− y − 2xy)

)
. (11)

Proof:For all x, y ∈ U . it holds that:

EA(x, y) = A(E1(x, y), . . . , (En(x, y)) = w1Eσ(1)(x, y) + . . .+ wnEσ(n)(x, y)

=
n∑
i=1

wi(1−
1

σ(i)
(1− x− y + 2xy)) =

n∑
i=1

wi −
n∑
i=1

(
wi
σ(i)

(1− x− y + 2xy))

= 1−
n∑
i=1

wi
σ(i)

(1− x− y − 2xy).

Therefore Eq.(13) is verified. The other one can be analogously done. N

Proposition 10 Let A : Un → U be an OWA-operator. For all x, y ∈ U , the (A, E)-operator ((A,D)-
operator) verifies Ek (Dk) for k ∈ {0(i), 1, 2(i), 2(ii), 3, 4}.

Proof: For all x, y ∈ U and i ≥ 1 the following holds.

E0(i) Since EA(1, 0) = 1−
∑n

i=1
wi
σ(i)(1− 1− 0− 2 · 0 · 1) then EA verifies E0(i).

E1 By Eq. (10), the following holds: EA(x, y) = 1−
∑n

i=1
wi
σ(i)(1−x−y−2xy) = 1−

∑n
i=1

wi
σ(i)(1−

y − x− 2yx) = 1−
∑n

i=1
wi
σ(i)(1− x− y − 2xy). Therefore, EA verifies E1.

E2(i) By Prop.2, if y1 ≤ y2 then
∑n

i=1
wi
σ(i)(1 − y1) ≥

∑n
i=1

wi
σ(i)(1 − y2) which means that 1 −∑n

i=1
1
i (1− y1) ≤

∑n
i=1 1−

1
i (1− y2). Therefore, EA verifies E2(i).

E2(ii) Analogous to E2(i).
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E3: Since 1− 2x+ x2 = 0 does not have rational zeros on U , we conclude that E(x, x) 6= 1.

E4: When EA(x, y) = 1 we have that
∑n

i=1
wi
σ(i)(1− x− y − 2xy) = 0. Then, it implies that 1− x−

y − 2xy = 0 or x = 1−y
1−2y Thus, we have as the possible solutions (x = 0 and y = 1) or (x = 1

and y = 0).

Analogously, it can be proved to the dual construction. Therefore Prop.10 is verified. N

Corollary 2 Let A : Un → U be an OWA-operator. For all x, y ∈ U , the (A, E)-operator ((A,D)-
operator) is e-subX(N)or connective.

Proof:Straightforward from Prop.10. N

4.3 Aggregating Fuzzy e-X(N)or (co)implications

In the following, focusing on the fuzzy e-XNor sub(co)implication class, a fuzzy sub(co)implication is
obtained from the OWA-operator and a finite subset of fuzzy e-subX(N)or sub(co)implications.

Proposition 11 The function Ii(Di) : U2 → U given by:

Ii(x, y) = 1− 1

i
(x− xy + 2x2y)

(
Ji(x, y) =

1

i
(1− x)(2− y − 2(1− x)(1− y))

)
,∀x, y ∈ U, (12)

whenever i is a rational index such that i ≥ 1, verifies Ik (Jk) for k ∈ {0(i), 1, 2(i), 2(ii), 3, 4, 5}.

Corollary 3 The function Ii(Ji) : U2 → U in Eq. (12)a (Eq. (12)b) is a fuzzy e-subX(N)or (co)implication.

In addition, the family of e-subX(N)or connectives Ii (Ji) is referred as I ( J ).

Proposition 12 Let A : Un → U be the OWA-operator. The function EA(DA) : U2 → U , called
(A, E)-operator ((A,D)-operator) is given by

IA(x, y) = 1−
n∑
i=1

wi
σ(i)

(x+ xy − 2x2y)

(
JA(x, y) =

n∑
i=1

wi
σ(i)

(1− x)(2− y − 2(1− x)(1− y)

)
. (13)

Proof:For all x, y ∈ U . it holds that:

IA(x, y) = A(I1(x, y), . . . , (In(x, y)) = w1Iσ(1)(x, y) + . . .+ wnIσ(n)(x, y)

=

n∑
i=1

wi(1−
1

σ(i)
(x− xy + 2x2y)) =

n∑
i=1

wi −
n∑
i=1

(
wi
σ(i)

(x− xy + 2x2y))

= 1−
n∑
i=1

wi
σ(i)

(x− xy + 2x2y).

Therefore Eq.(13) is verified. The other one can be analogously done. N

Proposition 13 Let A : Un → U be an OWA-operator. For all x, y ∈ U , the (A, I)-operator ((A,J )-
operator) verifies Ek (Dk) for k ∈ {0(i), 1, 2(i), 2(ii), 3, 4}.

Proof: Analogous of Prop.10. N

Corollary 4 Let A : Un → U be an OWA-operator. For all x, y ∈ U , the (A, E)-operator ((A,D)-
operator) is e-subX(N)or connective.

Proof: It follows from Prop.13. N
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5 Conclusion

The study of aggregating fuzzy e-X(N)or connectives, their dual construction and corresponding fuzzy
implications is main contribution of this work. Taking the class of strong fuzzy negation (standard
negation), the probablistic sum and the product t-norm the paper formally states that the OWA-operator
preserves the fuzzy e-X(n)or connectives and corresponding fuzzy e-X(N)or (co)implications.

Based on the previous study of fundamental properties of other fuzzy X(N)or classes (see, e.g. [2, 7]),
our current investigation aims clearly to contemplate other aggregation fuzzy X(N)or connectives also
including their conjugate operators obtained by action of an automorphisms on U .
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