Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Análise de Sensibilidade da Dinâmica Tumoral

Milene K. Gubetti, Louise Reips² UFSC, Blumenau, SC

A análise de sensibilidade é uma forma de medir como pequenas mudanças nos parâmetros de entrada de um modelo matemático afetam a saída [2]. O objetivo do trabalho é analisar a sensibilidade da densidade de células tumorais (C) no modelo (3.2.2) da referência [1], em que os autores usam o pacote Flexible Modelling Environment desenvolvido por Soetaert e Petzoldt [3] para determinar os parâmetros importantes no modelo.

Qual é o impacto na saída de um modelo da mudança de um parâmetro ligeiramente em relação à sua média? A maneira mais fácil de investigar é através de um gráfico: aumenta-se ligeiramente cada parâmetro em 10% um de cada vez, executa-se o modelo com esses valores alterados e compara-se a saída com a saída original [2]. O modelo proposto por [1] contém dez equações diferenciais ordinárias capazes de prever a dinâmica das células imunes no ambiente tumoral. Nele, a taxa de crescimento natural das células tumorais, α_c , e sua capacidade de suporte, β_c , afetam quantas células tumorais existem. Aumentar os outros parâmetros, descritos na Tabela 1, em 10% tem pouco efeito sobre a quantidade de células tumorais (Figura 1).

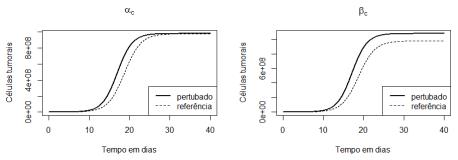


Figura 1: Impacto de um aumento de 10% no valor dos parâmetros α_c e β_c na densidade de C. Fonte: das autoras.

Em [2], transforma-se a informação gráfica em uma série de números chamados funções de sensibilidade. Essas funções mostram como cada variável y_i de um modelo é sensível a um único parâmetro θ_j , levando em conta o tamanho das variáveis Δy_i e a incerteza do parâmetro $\Delta \theta_j$: $S_{ij} = \frac{\Delta \theta_j}{\Delta y_i} \cdot \frac{\partial y_i}{\partial \theta_j}$. A combinação dos n parâmetros serve para diferenciar aqueles que são conhecidos com precisão dos que são mais incertos. Para um modelo resolvido numericamente, é mais fácil aproximar numericamente a mudança da saída em relação aos parâmetros: $\frac{\partial y_i}{\partial \theta_j} \approx \frac{y_i |_{\theta_j^*} - y_i|_{\theta_j}}{\theta_j^* - \theta_j}$, onde θ_j^* é o valor do parâmetro ligeiramente mudado ($\approx 1e-8$) e $y_i|_{\theta_j^*}$ é a saída do modelo ao usar esse valor. A sensibilidade geral da saída em relação a cada parâmetro pode ser calculada usando medidas, como:

$$\delta_i^{Sqr} = \sqrt{\frac{1}{n} \sum_{j=1}^n S_{ij}^2}, \quad \delta_i^{Abs} = \frac{1}{n} \sum_{j=1}^n |S_{ij}|. \tag{1}$$

 $^{^1}$ milene.gubetti@grad.ufsc.br

 $^{^2}$ l.reips@ufsc.br

2

É importante que a solução numérica seja precisa. Caso contrário, as funções de sensibilidade podem ser apenas ruído. Por exemplo, ao usá-las com um modelo dinâmico usando métodos numéricos, definem-se as tolerâncias para um valor menor. Isso ajudará a verificar se os resultados de sensibilidade são coerentes [2].

Tabela 1: As medidas δ_i^{Sqr} e δ_i^{Abs} em 1e + 10.

Parâmetro	Descrição	δ_i^{Sqr}	δ_i^{Abs}
φ_1	Taxa de ativação de células imunológicas M_1, M_2 e N_K	8,80	3, 20
φ_2	Taxa de ativação de células imunológicas T_C	6,80	3,60
φ_3	Taxa de ativação de células imunológicas T_0, T_1, T_2 e T_{17}	9,10	3,40
π_0	Taxa de inibição das células M_2 e T_{17}	6,90	3,50
π_1	Taxa de inibição das células M_1, M_2, N_K e T_1	6,80	3,60
π_2	Taxa de inibição das células M_1 , N_K , T_C , T_0 , T_1 , T_2 e C	5,00	2,00
α_m	Taxa de crescimento intrínseco dos macrófagos	6,80	3,60
α_k	Taxa de crescimento intrínseco das células natural killer	6,60	2,90
α_t	Taxa de crescimento intrínseco das células T	6,60	2,90
α_c	Taxa de crescimento intrínseco das células tumorais	6,80	3,20
β_m	Capacidade de carga dos macrófagos	6,80	3,60
β_k	Capacidade de carga das células natural killer	4,90	2,00
eta_t	Capacidade de carga das células T	2,70	1, 10
β_c	Capacidade de carga das células tumorais	6,80	3,60
δ_m	Taxa de inativação dos macrófagos devido às suas interações com células tumorais	9,30	4, 10
δ_k	Taxa de inativação das células natural killer devido às suas interações com células tumorais	8,00	4,60
δ_t	Taxa de inativação das células T devido às suas interações com células tumorais	9,30	4,20
μ_k	Taxa de morte natural das células natural killer	6,80	3,60
μ_m	Taxa de morte natural dos macrófagos	1,90	0,78
μ_8	Taxa de morte natural das células T citotóxicas	1,30	0,48
μ_t	Taxa de morte natural das células T	2,00	0,82
μ_i	Taxa de morte natural das células pré-cancerígenas	6,80	3,60
μ_c	Taxa de morte natural das células tumorais	6,60	2,90
κ	Nível de meia saturação das células cancerígenas	6,90	3,50
Λ_c	Taxa de inativação de células tumorais devido à sua interação com células efetoras	6,80	3,60
$ heta_c$	Taxa de produção de novas células tumorais por macrófagos	7,30	3,60
$ heta_i$	Taxa de produção de novas células tumorais por células pré-cancerígenas	6,80	3,60

Isso permite classificar no modelo [1] a importância dos diferentes parâmetros de acordo com a sensibilidade decrescente (Tabela 1). Alguns dos parâmetros que não foram observados por [1], incluindo π_1 e π_2 , foram identificados como sensíveis. Enquanto outros, como μ_i , μ_c e θ_i , estão relacionados ao número básico de reprodução R_0 - número médio de células imunes infectadas produzidas por uma única célula tumoral - calculado em [1].

Referências

- 1] I. M. Amima. "Investigating tumour micro environment dynamics based on cytokine-mediated innate-adaptive immunity". Tese de doutorado. Stellenbosch: Stellenbosch University, 2018.
- [2] K. Soetaert e P. M. Herman. A practical guide to ecological modelling: using R as a simulation platform. Vol. 7. 7. Springer, 2009. ISBN: 978-1-4020-8624-3.
- [3] K. Soetaert e T. Petzoldt. "Inverse Modelling, Sensitivity and Monte Carlo Analysis in R Using Package FME". Em: **Journal of Statistical Software** 33.3 (2010), pp. 1–28. DOI: 10.18637/jss.v033.i03.