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Synchronization is an important phenomenon in fields of science such as physics, biology and
engineering, whereby the mutual coupling of oscillators gives rise to collective dynamic behavior.
This behavior is key to understanding complex neural networks (NN). For example, studies sug-
gest that, underlying cognitive activities, synchronization of distant cortical regions occurs in the
brain [1]. Synchronization may occur without delay, overcoming the physical distance between the
synchronized regions, and is then called zero-lag synchronization. For a comprehensive analysis,
different types of coupling, mechanisms and complex architectures of NN need to be considered.
Figure 1(a) presents a basic network topology that consists of two oscillators connected through
bidirectional coupling to a central oscillator with delays τ21 and τ31. Such a system has already
been studied using lasers [2]. Here, we investigate the behavior of this configuration using elec-
tronic Colpitts oscillators (Figure 1(b)), whose dynamics is easily controlled through the oscillator
current, allowing operation in different regimes, particularly chaotic ones.
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Figure 1: a) Network with three oscillators. b) Colpitts in common base configuration. Source: authors.

The dynamics of oscillator i (i = 1, 2, 3) are described by normalized state equations [3],
ẋi =

g∗

Q(1−K) [−n(yi) + zi]

ẏi =
g∗

QK zi

żi = −QK(1−K)
g∗ [xi + yi]− 1

Qzi,

(1)

n(yi) =

{
−yi, yi ⩽ 1
−1, yi > 1,

(2)
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where zi is the normalized current on inductor L, xi and yi are, respectively, the normalized
voltage on capacitors C1 and C2, Q is the RL tank quality factor (Q = ω0L

R ), K is the capacitive
voltage divider (K = C2

C1+C2
), g∗ = αF I0L

VTR(C1+C2)
, αF is a gain of the transistor current and VT is

the thermal voltage. We consider ideal conditions (αF = 1) [3]. The resistive coupling between
the oscillators can be expressed by ϵ(yi − yj). We set the coupling strength factor ϵ = 1. We use
the Bogacki-Shampine method for numerical integration of delayed differential equations [4] and
find that synchronization with zero delay can be achieved numerically. Zero-lag synchronization
was also achieved experimentally with two Colpitts oscillators operating in a chaotic regime and
connected through a third oscillator, with C1 = 10nF , C2 = 3.3nF , L = 220uH and a delay
produced by an electronic module. Figure 2 presents time series of the three oscillators and the
corresponding cross-correlation signal (Equation 3) for each pair of oscillators:

Cij =
⟨xi(t)xj(t+∆t)⟩√

⟨x2
i (t)⟩⟨x2

j (t)⟩
(3)
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Figure 2: Time series of three Colpitts oscillators coupled with equal delays and cross-correlation between
the three oscillators for the topology of Figure 1(a). Source: authors.

Zero-lag synchronization between the two external oscillators is evidenced by the cross-correlation
coefficient C23 [5][2]. Synchronization also occurs between the central oscillator and the external
ones, although delayed (see C21 and C31). The synchronization pattern can be controlled through
the delay between the oscillators. For example, for coupling delays τ21 = 2τ31, both oscillators
1 and 2 synchronize with zero-lag, lagging behind oscillator 3. We numerically show that zero-
lag behavior also occurs in networks of more than three Colpitts oscillators, with the emergence
of groups of synchronized oscillators (sublattice synchronization), depending on the parity of the
number of oscillators. As a development, the zero-lag behavior discussed here may be explored in
more complex neurons motifs and is a promising technique for applications e.g in communication
and neural systems.
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