
Evaluating the Performance of Parallel

Linear Algebra Libraries for Level-1 BLAS

Douglas A. Augusto Luiz Mariano Carvalho Daniel Estrela

DMA – IM – UFRJ DMA – IME – UERJ PPGEM -FEN – UERJ

daa@labma.ufrj.br luizmc@ime.uerj.br destrela@gmail.com

Brunno F. Goldstein Paulo Goldfeld Michael Souza

PESC – COPPE – UFRJ DMA – IM – UFRJ DEMA – UFC

bfgoldstein@cos.ufrj.br goldfeld@ufrj.br michael@ufc.br

Abstract: We present a performance evaluation of the scalar-vector product (axpy) opera-
tion on four widespread linear algebra libraries. Benchmarks are performed for multi-cores and
many-cores architectures and the results are compared.

Keywords: Scalar-vector product, Linear Algebra libraries, Intel MKL, CUDA, ViennaCL

1 Introduction

This document aims at presenting a performance comparison of different parallel linear algebra
libraries, Intel MKL, Cusp, CuBLAS and ViennaCL, on the fundamental axpy operation (BLAS
Level 1). More precisely, we are interested in measuring how fast they compute y ← αx + y,
where α is a scalar and x and y n-dimensional dense vectors.

IntelMath Kernel Library (MKL)1 is a proprietary package of mathematical routines, includ-
ing a rich set of linear algebra, that are optimized for Intel processors. cuBLAS 2 is the NVIDIA
CUDA version of the complete standard BLAS library. Cusp3 is an open-source library of
generic parallel algorithms for sparse matrix and graph computations on CUDA. ViennaCL4

is also an open-source linear algebra library, but takes advantage of the portability offered by
OpenCL to seamlessly support multi-core and many-core processors from different vendors and
architectures.

2 Experiments

2.1 Computational environment

The experiments were performed on a 64-bit GNU/Linux machine equipped with two 16-core
Intel Xeon E5-2650v2 processor at 2.6GHz (with hyperthreading) and an NVIDIA Titan GPU
(driver version 319.82). All the experiments were compiled with the optimization flag enabled.
The following versions of the libraries were used: Intel MKL 11.1, NVIDIA cuBLAS 5.5, Cusp
3.0 and ViennaCL 1.5.1.

The results were obtained using double-precision floating point arithmetic and reported in
GFlop/s, measured as GFlop/s =

fpoperations

executiontime×109
, where fpoperations is given by 2n, accounting

for the scalar-vector multiplication and sum of two vectors, and executiontime is the wall-clock
which measures the time taken by the axpy operation [1].

1http://software.intel.com/en-us/intel-mkl
2http://developer.nvidia.com/cuBLAS
3http://cusplibrary.github.io/
4http://viennacl.sf.net

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 1, 2015.
Trabalho apresentado no XXXV CNMAC, Natal-RN, 2014.

DOI: 10.5540/03.2015.003.01.0117 010117-1 © 2015 SBMAC

http://dx.doi.org/10.5540/03.2015.003.01.0117


2.2 Results

The benchmark results in our experiments represent the average performance of one thousand
executions of the axpy operation using two groups of vectors sizes: small vectors (210, 211,
212 and 213 dimensions) and large vectors (220, 221, 222 and 223 dimensions). In this work we
adopt the methodology utilized and justified by Bell et al. [1], in which the authors say “our
measurements do not include time spent transferring data between host (CPU) and device (GPU)
memory, since we are trying to measure the performance of the kernels”.

0

5

10

15

20

25

30

35

2
10

2
11

2
12

2
13

2
20

2
21

2
22

2
23

G
F
l
o
p
/
s

ViennaCL (1-core CPU)
MKL

cuBLAS
Cusp

ViennaCL (GPU)

Figure 1: Performance of Intel MKL, cuBLAS and Cusp in GFlop/s.

Figure 1 summarizes the performances achieved by each library on all considered instances,
including a baseline measured using ViennaCL on only one CPU core. One can see that although
Intel MKL attains the highest throughput on the 220 instance, its performances consistently
degrade on the largest vector dimensions (221, 222 and 223), while the GPU is able to sustain
the same performance level after saturation. Without a more detailed analysis it is hard to
tell why exactly Intel MKL behaves strangely with respect to the 210 and 220 instances, but it
might have to do with how well the storage requirements of such vectors fit the cache hierarchy.
With respect to cuBLAS and Cusp, they obtained the same results on the small vectors, but
the former performed sightly better than the latter on the large workloads. Although being
competing on the large vectors, it is very noticeable the difficult of ViennaCL in getting high
performance out of the small ones on the GPU; this suggests, though, there is great room for
improvement in this library.

Given the results of our set of benchmarks, the next logical step as a follow-up study is to
investigate (i) why MKL peaks at 210 and 220 and rapidly degrades from 222 on; and (ii) what
is preventing ViennaCL from performing well on the small vector dimensions.

References

[1] Nathan Bell and Michael Garland. “Efficient sparse matrix-vector multiplication on
CUDA”. NVIDIA Technical Report NVR-2008-004, NVIDIA Corporation, December 2008.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 1, 2015.

DOI: 10.5540/03.2015.003.01.0117 010117-2 © 2015 SBMAC

http://dx.doi.org/10.5540/03.2015.003.01.0117

