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The singularities of a stable Gauss map of a closed orientable surface immersed generically in
three-dimensional Euclidean space, according to H. Whitney’s Theorem, are of the fold and cusp
types. The singular set of a stable Gauss map of a surface, which consists of curves of fold points
containing isolated cusp points, is the parabolic set on the surface. Each parabolic curve of the
singular set separates a hyperbolic region from an elliptic region of the surface. In this work, we
will explore how weighted graphs can be associated with stable Gauss maps and present a general
result that determines necessary and sufficient conditions for a weighted graph to be associated
with a stable Gauss map.

Let M be a closed orientable surface immersed f : M → R3, with stable Gauss map Nf : M →
S2, then we can define three subsets on M based on their Gaussian curvature K(p) = det dp(Nf ),
where p ∈ M :

• the eliptic region is the set {p ∈ M ;K(p) > 0};

• the parabolic region is the set {p ∈ M ;K(p) = 0};

• the hyperbolic region is the set {p ∈ M ;K(p) < 0};
We then associate a connected bipartite weighted graph G to the surface M through its Gaussian
curvature:

1) each elliptic and hyperbolic region corresponds to a vertex. We label the vertices with a
positive sign (+) for elliptic regions and with a negative sign (−) for hyperbolic regions;

2) each parabolic curve corresponds to an edge connecting the vertices of two bordering regions
(one elliptic and the other hyperbolic, since the surface is orientable);

3) the genus of each elliptic or hyperbolic region corresponds to the weight of its associated
vertex;

In such case, we say that the weighted bipartite graph G is realized by a stable Gauss map of a
closed orientable surface M (or equivalently, the stable Gauss map of a closed orientable surface
M realizes G) if and only if there exists an immersion f : M → R3 whose stable Gauss map Nf

has G as its associated graph.
Our goal is to prove that given any bipartite weigthed graph G, we can find a closed orientable

surface M with associated stable Gauss map which realizes G such that χ(M) = 2(1−β1(G)+ω(G)),
where β1(G) is the number of independent cycles of the graph G and ω(G) is the sum of all weights
of the vertices of G. For that, we first prove two partial results:
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Theorem 1: Any tree (connected graph with no cycles) with zero weight can be realized by a
stable Gauss map on an embedded sphere.

Theorem 2: Any connected bipartite graph with zero weight can be realized by a stable Gauss
map of a closed orientable surface M, with χ(M) = 2(1− β1(G)).
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