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Artificial neural networks (ANNs, [3]) have been successfully applied to solve partial differen-
tial equations, mainly after the emergence of the physics-informed neural networks (PINNs, [6]).
Applications to nonlinear conservation laws are also notable, including PINNs for high-speed flows
[5], conservative PINNs (cPINNs, [4]), and weak PINNs (wPINNs, [7]). In this work, we propose
the new ANN-Flux method to solve the Riemann problem for the nonlinear conservation law

ut + (F (u))x = 0, x, t ∈ R× (0, tf ], (1)
u(x, 0) = uL, x ∈ R−, u(x, 0) = uR, x ∈ R+, (2)

with given left and right states uL, uR ∈ R, and flux function F : R → R. It is well-known that
the entropic solution of (1) with a convex flux function is either a shock or a rarefaction wave
depending on the left and right states. The exact solution of the Riemann problem is given by
(left: shock, uR < uL, right: rarefaction, uL < uR)

u(x, t) =

{
uL , x < tσ,
uR , x > tσ,

u(x, t) =

 uL , x < tF ′(uL),
G(x/t) , tF ′(uL) < x < tF ′(uR),
uR , x > tF ′(uR),

(3)

where G(u) = [F ′]−1(u) and σ is the shock speed satisfying the Rankine-Hugoniot condition
σ = F (uL)−F (uR)

uL−uR
. The ANN-Flux (ANN-F) method is designed for complex fluxes, which are costly

to be evaluated, differentiated or inverted. Once multilayer perceptrons (MLP, [3]) neural networks
are universal approximators [3], ANN-F consists of approximating the flux F by a MLP ỹ = NF (u)
classically trained to minimize the mean squared error (MSE) loss ε

(
ỹ(s), y(s)

)
with a generated

data set {
(
u(s), y(s) = F

(
u(s)

))
}ns,F

s=1 , where ns,F is a given number of samples. For the simple
shock wave case, the solution is then approximated by substituting F by NF in (3)(left). But,
for a rarefaction case, a second MLP neural network NG learns to approximate [N ′

F ]
−1 ≈ [F ′]−1.

The evaluation of N ′
F can be efficiently computed by automatic differentiation (AD, [2]). The NG

is trained using a directly generated data set
{(

δỹ(s), u(s)
)}ns,G

s=1
, where ns,G is a given number

of samples. The data
{
uL ≤ u(s) ≤ uR

}ns,G

s=1
is randomly generated, forward through NF to give

ỹ(s) = NF

(
u(s)

)
, and then backward propagated to compute δỹ(s) = N ′

F

(
u(s)

)
. The training

of ũ(s) = NG

(
δỹ(s)

)
is obtained by minimizing the MSE loss ε

(
ũ(s), u(s)

)
on the neural network

weights and biases. The solution of the rarefaction case is then given by substituting F ′ by N ′
F

and G by NG in (3)(right).
As a preliminary result, Figure 1 shows the comparison between ANN-F and analytical solutions

of the Burgers equation, i.e. equation (1) with the flux F (u) = u2/2. By following a trial and error
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strategy, the NF has been chosen as a MLP of 1 − 30 × 3 − 1 architecture (one input, 3 hidden
layers each of 30 neuron units, one output) with hyperbolic tangent and the identity as activation
functions at hidden and output layers, respectively. The NG has been set as a simple perceptron
with the identity as the activation function. Both networks have been trained with the Adam
optimizer, the learning rate lr = 10−3, and the tolerance of τ = 10−5 for the loss function. We
note that the ANN-F has obtained very good results of the Burgers equations. Further work will
include its application to more complex conservation laws, as for instance the traffic flow problem
with a nonlocal flux based on the Lighthill-Witham-Richards model for vehicular traffic [1].

Figure 1: ANN-F (ũ) versus analytical solutions (u) of Burgers equation. Left: shock. Right:
rarefaction. Source: Authors
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