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Let A be an alphabet with at least two elements. The elements of AZ2

, called configurations,
have the form η = (ηggg)ggg∈Z2 , where ηggg ∈ A for all ggg ∈ Z2. For each uuu ∈ Z2, the shift application
Tuuu : AZ2 −→ AZ2

is defined by (Tuuuη)ggg = ηggg−uuu for all ggg ∈ Z2 and all η ∈ AZ2

. A configuration
η ∈ AZ2

is said to be periodic if there exists a non-zero vector hhh ∈ Z2, called period of η, such
that Thhhη = η. If η has two periods linearly independents over R2, we say that η is fully periodic.

From now on, we will assume that A is a finite alphabet.
Let Orb (η) = {Tuuuη : uuu ∈ Z2} denotes the Z2-orbit of η ∈ AZ2

. If A is endowed with the
discrete topology, then AZ2

equipped with the product topology is a metrizable compact space.
In particular, for all η ∈ AZ2

, the set Orb (η), where the bar denotes the closure, is a compact
subshift, i.e., a closed subset invariant by the Z2-action Tuuu, uuu ∈ Z2. We say that a configuration
η ∈ AZ2

has low pattern complexity if |{(Tuuuη)|S : uuu ∈ Z2}| ≤ |S| holds for some non-empty,
finite set S ⊂ Z2, where ·|S means the restriction to the set S. If in addition S is convex, i.e., a
subset of Z2 whose convex hull in R2, denoted by Conv(S), is closed and S = Conv(S) ∩ Z2, we
say that η has low convex pattern complexity.

Employing results from algebraic geometry, Jarkko Kari and Michal Szabados [1, 2] proved the
following periodic decomposition theorem:

Theorem 1.1 (Kari and Szabados [1]). Let η ∈ AZ2

, with A ⊂ Z, be a low pattern complexity
configuration. Then there exist periodic configurations η1, . . . , ηm ∈ ZZ2

such that η = η1+· · ·+ηm.

Let ℓ ⊂ R2 be a line through the origin. Given t > 0, the t-neighbourhood of ℓ is defined as
ℓt = {ggg ∈ Z2 : Dist(ggg, ℓ) ≤ t}, where Dist denotes the Euclidean distance between a point and a
set. Following Boyle and Lind [3], we say that ℓ is an expansive line on Orb (η) if there exists
t > 0 such that

∀ x, y ∈ Orb (η), x|ℓt = y|ℓt =⇒ x = y.

Otherwise, ℓ is called a nonexpansive line on Orb (η). A particular case of Boyle-Lind Theorem
[3, Theorem 3.7] implies that there exists at least one nonexpansive line on Orb (η) if the subshift
Orb (η) is infinite. We remark that nonexpansiveness is the heart of recent advances related to
Nivat’s conjecture.

If η = η1+ · · ·+ηm is a minimal periodic decomposition, where by minimal we mean a periodic
decomposition with the smallest possible number of periodic configurations, it is easy to see that
every nonexpansive line on Orb (η) contains a period for some ηi, with 1 ≤ i ≤ m. In his Ph.D.
thesis [4], Michal Szabados conjectured that the converse also holds:

Conjecture 1.1 (Szabados). Let η ∈ AZ2

, with A ⊂ Z, be a not fully periodic configuration and
suppose η = η1 + · · · + ηm is a minimal periodic decomposition. If ℓ ⊂ R2 is a line through the
origin and there exists 1 ≤ i ≤ m such that ℓ contains a period for ηi, then ℓ is a nonexpansive
line on Orb (η).

1cleber.colle@ufabc.edu.br

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, v. 11, n. 1, 2025.

Trabalho apresentado no XLIII CNMAC, Centro de Convenções do Armação Resort - Porto de Galinhas - PE, 2024

010011-1 © 2025 SBMAC



2

Szabados’s conjecture is a very recent open problem in symbolic dynamics. In [5], the author
solves Szabados’s conjecture for low convex pattern configurations. Further partial results related
to Szabados’s conjecture are given in [6].

In this work, we present a simple proof for Szabados’s conjecture in the case that η = η1+η2+η3
is a minimal periodic decomposition. The main idea for the proof is the following: let p be a prime
large enough so that A ⊂ {0, 1, 2, . . . , p−1} and consider the periodic decomposition η̄ = η̄1+η̄2+η̄3,
where the bar denotes the congruence modulo p. Since each configuration η̄i is defined on a finite
alphabet, it is easy to see that a line through the origin containing a period for η̄i is nonexpansive.
By the pigeonhole principle, we may extend this nonexpansiveness from η̄i to η̄. The result follows
from the fact that η̄ and η are essentially the same configurations.
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