Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Quadraturas Adaptativas na Avaliação de Soluções Particulares em Problemas de Transporte de Partículas

Fernando Groff, Pedro A. B. Antunes, Liliane B. Barichello³ IME/UFRGS, Porto Alegre, RS

A equação de transporte de partículas é uma equação fundamental na modelagem de diversos fenômenos, como transferência radiativa e transporte de nêutrons [3, 4]. Devido a sua complexidade, aproximações em ordenadas discretas são utilizadas para simplificar o tratamento dos operadores integrais angulares presentes no modelo. Em casos especiais, essa abordagem permite reduzir o problema a um sistema de equações diferenciais cuja solução pode ser obtida analiticamente. Contudo, a avaliação da solução particular [1], onde os termos de fonte externa podem ser dos mais variados tipos, requer a avaliação de operadores integrais na variável espacial.

Nesse contexto, a implementação de quadraturas adequadas se torna imperativo. Quando os termos de fonte externa são conhecidos, esquemas de quadratura adaptativos [2] podem ser utilizados para aproximar os operadores integrais. Tendo em vista a flexibilidade e a precisão desses esquemas, bem como o interesse em problemas de transporte não homogêneos, neste trabalho investigamos a aplicação de uma quadratura adaptativa na avaliação da solução particular da equação de transferência radiativa unidimensional

$$\mu \frac{\partial}{\partial \tau} I(\tau, \mu) + I(\tau, \mu) = \frac{\omega}{2} \sum_{l=0}^{L} \beta_l P_l(\mu) \int_{-1}^{1} P_l(\mu') I(\tau, \mu') d\mu' + S(\tau, \mu), \qquad (1)$$

onde I é a intensidade, $\tau \in (0, \tau_0)$ é a variável espacial, $\mu \in [-1, 1]$ é a variável angular, $\omega \in (0, 1)$ é o albedo de espalhamento, β_l são os coeficientes da expansão da função de fase em polinômios de Legendre, L é o grau de anisotropia e S é a fonte externa de radiação.

Tomando uma discretização angular com N nós $\mu_k \in (0,1]$ e N pesos w_k , expressamos a solução particular em ordenadas discretas, derivada via função de Green, na forma [1]

$$I_{p}(\tau, \pm \mu_{k}) = \sum_{j=1}^{N} C_{j}^{+}(0, \tau) \phi(\nu_{j}, \pm \mu_{k}) + C_{j}^{-}(\tau_{0}, \tau) \phi(\nu_{j}, \mp \mu_{k}), \qquad (2)$$

sendo C_i^{\pm} as funções

$$C_{j}^{\pm}(x,y) = \frac{\pm 1}{\mathcal{N}(\nu_{j})} \sum_{k=1}^{N} w_{k} \int_{x}^{y} \left[S(\tau',\mu_{k}) \phi(\nu_{j}, \pm \mu_{k}) + S(\tau', -\mu_{k}) \phi(\nu_{j}, \mp \mu_{k}) \right] e^{\mp (y-\tau')/\nu_{j}} d\tau', (3)$$

 ν_j os autovalores, $\phi(\nu_j, \pm \mu_k)$ as autofunções e $\mathcal{N}(\nu_j)$ as integrais de normalização. Para o cálculo das integrais espaciais em (3), consideramos o esquema de quadratura duplamente adaptativo CQUAD [2]. Esse esquema utiliza ordens crescentes da quadratura de Clenshaw-Curtis para aproximar a integral em cada intervalo. Uma estimativa do erro é obtida a partir da norma L^2 da

¹fernando.groff@ufrgs.br

²pedrobineloantunes@gmail.com

³lbaric@ufrgs.br

2

diferença entre os polinômios interpoladores de ordens sucessivas. Se essa diferença for muito grande ou se a ordem máxima da quadratura já tiver sido aplicada, o intervalo é bissetado. O algoritmo CQUAD é capaz de tratar diversos tipos de integrandos (contendo singularidades, por exemplo), sendo adequado para uma implementação de propósito geral.

Na Tabela 1, apresentamos resultados para a radiação incidente (relativa à solução particular),

$$G_{p}(\tau) = 2\pi \int_{-1}^{1} I_{p}(\tau, \mu) d\mu \approx 2\pi \sum_{j=1}^{N} \left[C_{j}^{+}(0, \tau) + C_{j}^{-}(\tau_{0}, \tau) \right] \sum_{k=1}^{N} w_{k} \left[\phi\left(\nu_{j}, \mu_{k}\right) + \phi\left(\nu_{j}, -\mu_{k}\right) \right], (4)$$

calculada em meio altamente espalhador e com termo fonte relevante em problemas com incidência de radiação colimada [3]. Esses valores comparam os resultados obtidos calculando-se as integrais em (3) de forma exata e pela quadratura adaptativa com tolerância de 10^{-12} para os erros absoluto e relativo. Em ambos os casos, consideramos a discretização angular via quadratura de Gauss-Legendre no semi-intervalo (0, 1] com N=40. Como é possível observar, os resultados apresentam ótima concordância, com erros relativos inferiores à tolerância solicitada.

Os testes aqui apresentados fazem parte de investigação mais geral de quadraturas adaptativas e devem ser comparados com outras abordagens e esquemas de quadratura para aplicação em problemas de interesse na área de segurança nuclear envolvendo os chamados momentos multiplicativos [4]. Os intervalos de definição das quadraturas e sua adaptabilidade podem afetar significativamente a acurácia dos resultados finais.

Tabela 1: Radiação incidente G_p calculada com $\tau_0 = 1$, $\omega = 0.9$, $\beta_l = (2l+1) g^l$, g = 0.8, L = 99 e $S(\tau, \mu) = \frac{\omega}{4\pi} \sum_{l=0}^{L} \beta_l P_l(\mu) e^{-\tau}$.

<i>t</i> =0						
au	0	0.2	0.4	0.6	0.8	1
Exato	0.298172	0.517300	0.675539	0.792538	0.875735	0.926364
CQUAD	0.298172	0.517300	0.675539	0.792538	0.875735	0.926364
Erro relativo	4.97E-13	6.03E-14	3.73E-14	9.88E-14	5.72E-14	2.16E-13

Agradecimentos

Os autores agradecem à CAPES e ao CNPq por financiamento parcial a este trabalho.

Referências

- [1] L. B. Barichello, R. D. M. Garcia e C. E. Siewert. "Particular solutions for the discrete-ordinates method". Em: Journal of Quantitative Spectroscopy and Radiative Transfer 64 (2000), pp. 219–226. DOI: 10.1016/S0022-4073(98)00146-0.
- [2] P. Gonnet. "Increasing the Reliability of Adaptive Quadrature Using Explicit Interpolants". Em: ACM Transactions on Mathematical Software 37 (2010), pp. 1–32. DOI: 10.1145/1824801.1824804.
- [3] F. Groff, L. B. Barichello e E. Sauter. "A Concise and Accurate Solution for Radiative Transfer Problems Relevant in Hyperthermia Models". Em: **Proceedings of CHT-21 ICHMT International Symposium on Advances in Computational Heat Transfer**. Begellhouse, 2021, pp. 445–460. DOI: 10.1615/ICHMT.2021.CHT-21.360.
- [4] I. Pázsit e L. Pál. "Multiplicity theory beyond the point model". Em: Annals of Nuclear Energy 154 (2021), pp. 108-119. DOI: 10.1016/j.anucene.2020.108119.