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This summary explores predicting COVID-19 case time series in Brazil using GCN (Graph
Convolutional Network) based models, a type of Graph Neural Networks (GNN), along with mo-
bility networks [1, 2]. Individual city predictions are made by incorporating city-specific time series
data and leveraging subgraphs derived from the connections in the mobility network to evaluate
the temporal COVID-19 data. Additionally, the study employs two other models dedicated solely
to time series prediction: Prophet [5] and Long Short-Term Memory (LSTM) [3]. The Root Mean
Square Error (RMSE) values of COVID-19 forecast models applied in the Brazilian context are
summarized in Table 1. Upon analyzing these values, the models can be ranked from the most to
the least robust as follows: GCLSTM exhibits the smallest standard deviation (452.59), indicating
consistent and reliable performance. Following GCLSTM is GCRN, which has a standard devia-
tion value of 500.39 and achieves the lowest maximum RMSE value of 3, 699.74. Prophet shows
competitive performance, with a mean RMSE value of 480.74, similar to LSTM’s mean RMSE
of 396.71, but with lower maximum and standard deviation RMSE. Lastly, LSTM demonstrates
the lowest mean RMSE (396.71) but is characterized by significant variability in errors due to its
extremely high Max RMSE (250, 275.07) and for having the highest standard deviation RMSE
(4, 574.69).

Table 1: RMSE values of the forecast models of COVID-19 cases in Brazil.
Model RMSE (Cases)

Mean Max Min Stand.
GCRN 3,059.50 3,699.74 2,108.77 500.39

GCLSTM 3,583.88 4,569.97 2,847.56 452.59
LSTM 396.71 250,275.07 0.001 4,574.69

Prophet 480.74 5,1597.08 1.32 1,703.10

We also delve into the correlations between epidemiological time series predictions and the
influence regions of Brazilian cities (REGIC) [4], including variables such as: POPMUN (population
size), VAR03 (Gross Domestic Product), VAR19 (Territory Management Centrality Score), VAR56
(General Attraction Score), and VAR79 (Quantity of Commercial Categories). Results reveal
significant correlations (p-values < 0.05) between Root Mean Square Error (RMSE) and various
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variables across the entire Brazilian territory, including POPMUN (population size), VAR03 (Gross
Domestic Product), VAR19 (Territory Management Centrality Score), VAR56 (General Attraction
Score), and VAR79 (Quantity of Commercial Categories), some obtained from the 2022 Brazilian
census [4].

The identified correlations highlight the influence of various factors on the accuracy of COVID-
19 prediction models in Brazil. Centrally located municipalities with higher connectivity and larger
populations tend to exhibit less precise predictions. Additionally, socioeconomic variables such as
GDP (VAR03), municipal attractiveness (VAR56), and governance centrality (VAR19) show signif-
icant correlations with prediction model accuracy, suggesting that the complexity of municipalities
impacts prediction precision. These findings provide valuable insights into the challenges of mod-
eling and forecasting the spread of COVID-19 in Brazil.
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