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Abstract. The Constant Rank Constraint Qualification (CRCQ), introduced by Janin in [Math.
Program. Study 21:110-126, 1984], has several applications in nonlinear programming context,
such as computing the derivative of the value function, second-order optimality conditions, global
convergence, stability analysis and encompass without entirely the linear program problems. This
work will present an extension of CRCQ that retrieves the well known properties from nonlinear
programming and, in addition, to propose a constraint qualification based on curves that naturally
rises from CRCQ and explain in a very simple way the second-order optimality conditions that can
be obtained for second-order cone programming problems.
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1 Introduction
The study of optimality conditions and constraint qualifications has been shown to play an

important role in optimization, once important works has been published in recent years, such
as the sequential optimality conditions for second-order cone programming problems [7]. See also
references therein.

To the best of our knowledge, the first approach to define a constant rank-type constraint
qualification for second-order cone programming problems was in [14], where the authors proposed
CRCQ, RCRCQ and CRSC conditions. However, in [3] we showed that their proposals had some
mistakes that we would investigate later. The example proposed in [3] and an example given by [1]
showed that a constant rank condition for second-order cone programming problems would take
into account properly the structure of the cone, once even a problem where its constraints are
linear might not have Lagrange multipliers for a local minimizer. To deal with these difficulties,
diverse approaches were made in order to converge to a solution for this problem. First, we
presented a naive approach in [4], where we used a reduction mapping in order to transform some
conic constraints in to inequality constraints, for then to use theoretical framework from nonlinear
programming. However, for the remaining sequences we had to use Robinson’s CQ. It is important
to notice that our approach can deal with both types of constraints at the same time. Later, instead
of avoid the second-order cone structure, we embraced it and through the eigenvector structure,
we could then make an other approach weakening the nondegeneracy condition and using the
sequential optimality condition. See [6] for more details. Last, we used the constant rank theorem
in a similar vein that Janin did in [11] for nonlinear programming problems. We could reclaim
similar results as in nonlinear programming problems such as: it is weaker than nondegeneracy
condition, independent of Robinson’s CQ and stronger than Abadie’s CQ. In addition, we could

1thiagops@ime.usp.br
2ghaeser@ime.usp.br

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, v. 11, n. 1, 2025.

Trabalho apresentado no XLIII CNMAC, Centro de Convenções do Armação Resort - Porto de Galinhas - PE, 2024

DOI: 10.5540/03.2025.011.01.0517 010517-1 © 2025 SBMAC

http://dx.doi.org/10.5540/03.2025.011.01.0517


2

get some second-order results based on the critical cone such as [2] did for nonlinear programming
problems. See [5].

In Section 2 we start present the basic definitions for the second-order cone programming
problems. In Section 3 we present the first-order optimality conditions and the difficulties to
define a constant rank-type constraint qualification. In Section 4 we present our proposal based
on the constant rank theorem and its applications, such as a new constraint qualification based on
curves and the second-order conditions obtained with the proposals.

2 The Second-Order Cone Programming problem
Let us consider the standard nonlinear second-order cone programming problem

Minimize f(x),
s.t. gj(x) ∈ Kmj , j = 1, . . . , q,

(NSOCP)

where f : Rn → R, gj : Rn → Rmj are at least twice continuously differentiable and Kmj
is a second-

order cone (also knonw as Lorentz cone), that is given by Kmj := {(z0, ẑ) ∈ R×Rmj−1 | z0 ≥ ∥ẑ∥}
when mj > 1 and K1 := {x ∈ R | x ≥ 0}. We will denote the feasible set of (NSOCP) by Ω. The
(Bouligand) tangent cone is given by

TΩ(x̄) := {d ∈ Rn | ∃ tk → 0+, ∃ dk → d such that x̄+ tkd
k ∈ Ω}. (1)

With respect to the topological part the Km, the interior part of Kmj
is int(Kmj

) := {(z0, ẑ) ∈
R×Rmj−1 | z0 > ∥ẑ∥} and the nonzero boundary is bd+(Kmj

) := {(z0, ẑ) ∈ R×Rmj−1 | z0 = ∥ẑ∥ >
0}. Given a feasible point x̄, consider the following index sets: IB(x̄) := {j; gj(x̄) ∈ bd+(Kmj

)},
Iint(x̄) := {j; gj(x̄) ∈ int(Kmj )} and I0(x̄) := {j; gj(x̄) = 0.

With these sets at hand, let us introduce the linearized cone LΩ(x̄):

LΩ(x̄) := {d ∈ Rn | Dgj(x̄)d ∈ TLmj
(gj(x̄)), j = 1, . . . , q}

=

{
d ∈ Rn Dgj(x̄)d ∈ Kmj

, j ∈ I0(x̄);
⟨Dgj(x̄)d,Γjgj(x̄)⟩ ≥ 0, j ∈ IB(x̄)

}
, (2)

where Γj is a diagonal matrix where (Γj)ii = 1 if i = 1 and (Γj)ii = −1 otherwise. The expression
showed in (2) was obtained in [8, Lemma 25] and it gives us a easier way to deal with the linearized
cone, that will be explored along this work.

Given a feasible point x̄ of (NSOCP), we say that the Karush-Kuhn-Tucker (KKT) conditions
hold for problem (NSOCP) at feasible point x̄ if there exists Lagrange multipliers µj ∈ Kmj

,
j = 1, . . . , q such that

∇xL(x̄, µ) = ∇f(x̄)−
q∑

j=1

Dgj(x̄)
Tµj = 0, (3)

⟨µj , gj(x̄)⟩ = 0, j = 1, . . . , q, (4)

where L(x, µ) := f(x) −
∑q

j=1⟨µj , gj(x)⟩ is the Lagrangian function of problem (NSOCP) and
∇xL(x, µ) is the gradient of L at the point (x, µ) with respect to the first variable. We will denote
the set of all Lagrange multipliers associated to a feasible point x̄ by Λ(x̄).

Combining the information given by the characterization of the linearized cone and the com-
plementarity condition given in (4), we obtain that the Lagrange multiplier must has the following
structure: µj = 0 if j ∈ Iint(x̄), µj ∈ Kmj if j ∈ I0(x̄) or µj = αjΓjgj(x̄) if j ∈ IB(x̄), for some
αj ≥ 0. In other words, the constraints gj such that j ∈ IB(x̄) seems to have a behavior similar
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to an inequality constraint from nonlinear programming problem. Indeed, with this information
in mind, the KKT conditions can be rewritten in the following way: there are µj ∈ Kmj , j ∈ I0(x̄)
and αj ≥ 0, j ∈ IB(x̄) such that

∇f(x̄)−
∑

j∈I0(x̄)

Dgj(x̄)
Tµj −

∑
j∈IB(x̄)

αj∇ϕ̃j(x̄) = 0, (5)

with
ϕ̃j(x) :=

1

2

(
[gj(x)]

2
0 − ∥ĝj(x)∥2

)
and ∇ϕ̃j(x) = Dgj(x)

TΓjgj(x), j ∈ IB(x̄) (6)

and it is called reduction mapping. See [8] for more details. Thus, we can then rewrite the (NSOCP)
problem locally around x̄ changing the “second-order cone-type” constraints j ∈ IB(x̄) by inequality
constraints as it is done in nonlinear programming problems.

3 Optimality conditions and constraint qualification

Before we present the extension of CRCQ to (NSOCP) problem, let us understand properly the
difficulties of this task. Let us start recalling the so-called first-order geometric necessary condition.
Let x̄ be a local minimizer of (NSOCP), then −∇f(x̄) ∈ TΩ(x̄)◦. This relation shows a genuine
optimality condition in the sense that it is a condition that is satisfied by every local minimizers.
This condition means that there is no feasible descent direction from x̄. However, despite the fact
that it is a simple condition to understand, it is hard to verify its fulfilment. In order to deal
with this issue, one could ask about avoid using the polar of the tangent cone. The natural option
that rises is the linearized cone. It is known that TΩ(x̄) ⊆ LΩ(x̄), which means LΩ(x̄)

◦ ⊆ TΩ(x̄)◦.
Unfortunately, the polar of the linearized cone can be strictly included at the polar of tangent
cone, and then we can not use the first-order geometric necessary condition. The conditions that
make this gap empty are called constraint qualification.

To start the comprehension of constraint qualification in (NSOCP) problem, we could use a
similar approach of nonlinear programming problems. Nevertheless, the following example given
in [1, Subsection 2.1] shows that we need to consider more details in order to define a constraint
qualification in (NSOCP).

Example 3.1. Consider the following problem

Minimize f(x) := −x2,
s.t. g(x) := (x1, x1, x2) ∈ K3.

(7)

The point x̄ = (0, 0) is a local minimizer and, moreover, we have that TΩ(x̄) = LΩ(x̄). However,
there is no Lagrange multiplier and then the KKT conditions do not hold at x̄.

In nonlinear programming problems the equality of the cones TΩ(x̄) and LΩ(x̄) is sufficient
to define a constraint qualification and it is known as Abadie’s Constraint Qualification. Even a
weaker version, named the equality between its polars, is also a constraint qualification and it is
known as Guignard’s Constraint Qualification. However, when we consider the (NSOCP) problem,
we see that these conditions are not enough to define a constraint qualification. Also, the condition
proposed by Guignard in [10] should encompass the (NSOCP), once it was proposed for problems
in a general Banach spaces. Thus, let us investigate it deeper. Consider the following problem

Minimize f(x),
s.t. g(x) ∈ C, (8)
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where f : Rn → R and g : Rn → B, where B is a Banach space and the functions f and g are twice
continuously differentiable. Thus, consider the following set

H(x̄) := Dg(x̄)TNC(g(x̄)) =
{
Dg(x̄)T y | y ∈ NC(g(x̄))

}
, (9)

where

NC(g(x̄))
.
= TC(g(x̄))◦ = {y ∈ C◦ | ⟨g(x̄), y⟩B = 0} (10)

is the normal cone to C at g(x̄). Now we can present the main result of [10].

Theorem 3.1. (Theorem 2 of [10]) Let x̄ be feasible point of (8). Then

i) LΩ(x̄) = H(x̄)◦;

ii) if x̄ is a local minimizer and, in addition, TΩ(x̄)◦ = LΩ(x̄)
◦ and H(x̄) is closed, then there

exists µ ∈ C◦ such that

∇f(x̄) +Dg(x̄)T µ̄ = 0 and ⟨g(x̄), µ̄⟩ = 0, (11)

that is, x̄ is a KKT point associated to the Lagrange multiplier µ̄.

The theorem above explains why there is no Lagrange multiplier at Example 3.1. Even if we
have the equality TΩ(x̄) = LΩ(x̄), this is not a CQ for a (NSOCP) problem. This misunderstanding
probably happens due to a bias from nonlinear programming problems. Indeed, when we consider
the non-negative orthant at NLP problems, this cone is polyhedral and then its image by a linear
application is also polyhedral, which means that it is closed as Guignard request. On the other
hand, when we look at the second-order cone, the image of NKm

(g(x̄)) by a linear application, we
might have a set that is not closed. This is not trivial to verify and the interested reader can find
more details in [12].

With the correct definition of Guignard’s Constraint Qualification at hand, it is possible to
recover the correct definition of Abadie’s Constraint Qualification as well, namely, the equality
TΩ(x̄) = LΩ(x̄) and the set H(x̄) be closed. This definition is also presented by Börgens et al. in
[9, Definition 5.5].

4 Constant rank constraint qualification for NSOCP
In this section we will present the main results of [5]. Let us introduce the definition that will

be pivotal for the proposal of the constant rank-type constraint qualification.

Definition 4.1. [5, Definition 4.1] Consider the problem (NSOCP) and let x̄ be a feasible point.
We say that the facial constant rank property holds at x̄, if there is a neighborhood V of x̄ such
that for all subsets J1, J2 ⊆ I0(x̄), J3 ⊆ IB(x̄), with J1 ∩ J2 = ∅, and all matrices Aj ∈ Rmj×mj−1

of full column rank with j ∈ J1, the rank of⋃
j∈J1

{
Dgj(x)

TAj

} ⋃
j∈J2

{Dgj(x)}
⋃
j∈J3

{∇ϕ̃j(x)}.

remains constant for all x ∈ V .

The first point that has to be noticed at the definition above, is the fact that it does not have
the name constraint qualification, because it is not a CQ. Indeed, notice that a (NSOCP) problem
whose constraints are linear satisfies the facial constant rank condition. In particular, the Example
3.1 also does and it does not have a Lagrange multiplier at the local minimizer. However, with the
condition presented above we can get an important result as follows:
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Theorem 4.1. [5, Theorem 4.1] Consider the problem (NSOCP) and let x̄ be a feasible point. If
the facial constant rank property holds at x̄, then TΩ(x̄) = LΩ(x̄).

The facial constant rank property explains in a simple way the relation between the constant
rank of the constraints with the equality between the tangent and linearized cones. Since we already
know that only this equality is not enough to define a CQ, like as Guignard’s CQ or Abadie’s CQ,
the natural condition to be added to the facial condition is to request explicitly the closeness of
H(x̄). Thus, we can propose the Constant Rank Constraint Qualification in the following way:

Definition 4.2. [5, Definition 4.2] Consider the problem (NSOCP) and let x̄ be a feasible point.
We say that the Constant Rank Constraint Qualification (CRCQ) holds at x̄, if the facial constant
rank property holds at x̄ and, in addition, if the set H(x̄) is closed.

With this new definition at hand, we can introduce the main result obtained in [5].

Theorem 4.2. [5, Theorem 4.2] The CRCQ condition according to the Definition 4.2 implies
Abadie’s CQ. In particular, the CRCQ condition is a constraint qualification for the problem
(NSOCP).

The constant rank constraint qualification proposed to (NSOCP) problems is a natural gener-
alization of the condition known in nonlinear programming problems and contains the same well
desired properties, like as the fulfillment of the linear case, it can be proved using a constant rank
theorem and implies Abadies’s CQ as Janin did in [11], it is independent of Robinson’s Constraint
Qualification and strictly weaker than the nondegeneracy condition [5, Example 4.1 and 4.2] and,
moreover, it has second-order properties as it was proved in [2], as we will show later.

Before we introduce the second-order results, let us present a new constraint qualification based
on curves that naturally rises from CRCQ. For such, take a direction d ∈ LΩ(x̄) and consider the
following sets:

Dint
B (x̄) := {j ∈ {1, 2, . . . , q} | gj(x̄) ∈ bd+(Kmj

),∇ϕ̃j(x̄)
T d > 0}

D0
B(x̄) := {j ∈ {1, 2, . . . , q} | gj(x̄) ∈ bd+(Kmj

),∇ϕ̃j(x̄)
T d = 0}

Dint
0 (x̄) := {j ∈ {1, 2, . . . , q} | gj(x̄) = 0, Dgj(x̄)d ∈ int(Kmj )} (12)

D0
0(x̄) := {j ∈ {1, 2, . . . , q} | gj(x̄) = 0, Dgj(x̄)d = 0}

DB
0 (x̄) := {j ∈ {1, 2, . . . , q} | gj(x̄) = 0, Dgj(x̄)d ∈ bd+(Kmj )},

Definition 4.3. [13, Definition 4.4.2] Consider the problem (NSOCP) and let x̄ be a feasible point.
Given a direction d ∈ LΩ(x̄), consider the sets defined in (12). We say that the Reformulation of
the McCormick (Ref-McCormick) for (NSOCP) holds at x̄ if the set H(x̄) is closed and if there
exists a twice differentiable curve ξ : [0, ε] → Rn such that ξ(0) = x̄ and ξ′(0) = d, and, in addition,
for all t ∈ (0, ε] we have that

gj(ξ(t)) ∈

 bd+(Kmj ), j ∈ DB
0 (x̄) ∪D0

B(x̄),
int(Kmj ), j ∈ Dint

0 (x̄) ∪Dint
B (x̄),

{0}, j ∈ D0
0(x̄).

(13)

The Ref-McCormick condition is a different approach to define a constraint qualification, once
it is based on the existence of a curve for each direction d ∈ LΩ(x̄). This condition is weaker than
CRCQ [13, Theorem 4.4.1] and implies Abadies’s CQ [13, Theorem 4.4.2].

In order to present the second-order results, let us present first the following definition that
associate a constraint qualification with second-order optimality conditions.
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Definition 4.4. Consider the problem (NSOCP) and let x̄ be a KKT point associated to a La-
grange multiplier (µ1, . . . , µq). We say that the Strong Second-Order Condition (SSOC) holds at
(x̄, µ1, . . . , µq) if

dT∇2
xxL(x̄, µ1, . . . , µq)d+ dTH(x̄, µ1, . . . , µq)d ≥ 0,

for all d ∈ C(x̄), where H(x̄, µ1, . . . , µq) =

q∑
j=1

Hj(x̄, µj) with

Hj(x̄, µj) :=

− [µj ]0
[gj(x̄)]0

Dgj(x̄)
TΓjDgj(x̄), if gj(x̄) ∈ bd+(Kmj

),

0, otherwise.

Now let us present the following result that shows that a local minimizer that satisfies Ref-
McCormick also satisfies the strong second-order condition is satisfied for any Lagrange multiplier.
This result is important once it is not satisfied under Robinson’s CQ and if we assume nondegen-
eracy condition we have that the set of Lagrange multipliers is singleton. Also keep in mind that
under Ref-McCormick we might have that the set of Lagrange multipliers is not limited.

Theorem 4.3. Let x̄ be a local minimizer of the problem (NSOCP) such that Ref-McCormick
holds. Then, for any Lagrange multiplier (µ1, . . . , µq), we have that (x̄, µ1, . . . , µq) satisfies SSOC.

To finish the results related to the second-order optimality conditions, we present the following
result that shows that the Hessian of the Lagrangian function is constant for every Lagrange
multiplier associated to a local minimizer x̄ that satisfies Ref-McCormick condition.

Theorem 4.4. Let x̄ be a local minimizer of (NSOCP) such that Ref-McCormick holds. The
quadratic form

dT∇2
xxL(x̄, µ1, . . . , µq)d+ dTH(x̄, µ1, . . . , µq)d (14)

for d ∈ C(x̄), does not depend on (µ1, . . . , µq) ∈ Λ(x̄).

5 Final considerations
The study of CQ’s for second-order cone programming problems has been shown a no trivial

task. On the one hand we have the nondegeneracy condition and Robinson’s CQ that play an
important role for the theory but they have some limitations, like the fact that set of Lagrange
multiplier is singleton under nondegeneracy condition and it is also the strongest CQ known, and
even if the set of Lagrange multipliers be compact if we assume Robinson’s condition, we do
not have any interesting second-order result under this condition. On the other hand, constant
rank-type constraint qualifications were proposed initially just in 2019 by Zhang and Zhang in
[14]. However, in [3] we showed that all of their proposals were incorrect. The path to get
the constant rank condition for (NSOCP) started with a naive proposal made in [4], where we
mixed “pure” conic constraints with inequality constraints in order to get naive CQ’s. After that,
analyzing deeper the structure of eigenvalues and eigenvectors of the second-order cone, we could
propose new conditions without using the previous one where we avoided the difficulties of a conic
problem. This new approach also encompassed the so-called sequential optimality conditions and
it was presented in [6]. After that, we proposed then a condition based on a constant rank theorem
that reclaims the well properties of its counterpart in nonlinear programming problems and also
deals with the conic difficulties, as we discussed at Section 3. These results were presented in [5].
Finally, we introduced the Ref-McCormick condition that naturally rises from CRCQ and also keep
its important characteristics, such as the second-order optimality conditions obtained. Moreover,
we proved that Ref-McCormick implies that the Hessian of the Lagrangian function is constant for
every Lagrange multiplier, which is new even in a nonlinear programming context.
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