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Full Euler equations for waves generated by vertical seabed
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Abstract. This work consists on a concise summary of the author’s Master’s Dissertation. Further
details can be found in the original thesis.

We introduce a novel numerical method for simulating surface gravity waves generated by verti-
cal seabed displacements. Our method utilizes a time-dependent conformal map to incorporate
seabed geometry and wave profiles, allowing for handling various seabed and wave configurations.
We validate our approach by replicating Hammack’s tsunami generation and propagation results,
confirming accurate wave generation prediction according to Hammack’s linear theory. Then, we
discuss the effect of nonlinearity on the generated wave. Additionally, we explore limitations of the
passive generation approach in the context of the fully nonlinear Euler equations.

Key words. Seafloor displacement, Euler equations, Conformal mapping, Pseudo-spectral numer-
ical methods.

1 Introduction
In this study, we analyze the generation and propagation of surface gravity waves through

underwater seabed displacements. This investigation provides insights into tsunami behavior post-
seismic activity [3]. Hammack’s seminal research laid the foundation of this topic by devising
linear equations to model wave generation, validated through laboratory experiments [9]. His
work sparked widespread exploration into surface gravity wave generation using linearized Euler
equations as a fundamental model (see [3–5, 10, 19] and references therein).

Recent research on nonlinear waves generated by seabed deformation has primarily focused on
asymptotic theory [13, 14] or Reynolds-Averaged Navier-Stokes equations coupled with a k − ε
turbulence model [16, 20]. Michele et al. [14] observed that weakly nonlinear models predict
waves with higher crests and deeper troughs compared to linear solutions. It is noteworthy that
although Lynett and Liu [13] studied fully nonlinear waves, their investigation is made under the
assumption of weak dispersion Qi et al. [16] and Shen et al. [20] noted that nonlinear effects
become significant when seabed displacement is high and rapid, underscoring the necessity for
comprehensive nonlinear models. The differences between waves generated by linear and nonlinear
models warrant further investigation, particularly given the practical implications in engineering
and oceanography.

Our aim is to develop a numerical method solving the full nonlinear Euler equations for irrota-
tional flow with two moving boundaries: the seabed and the free surface. The seabed displacement,
either upward or downward, initiates surface waves due to geometric deformations of the fluid do-
main. Our approach involves computing a time-dependent conformal map, transforming the fluid
domain into a uniform strip known as the canonical domain. This technique was pioneered by
Dyachenko et al. [6] and refined by various authors [1, 2, 7, 11, 15, 17].
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The same problem of hydrodynamic that is presented in this work was investigated by Ruban
[18]. However, we highlight that our method is more general than the one presented by this
author, since our model incorporates seabed variations (in space and time) directly into the physical
domain. To the best of our knowledge, this mapping has not been previously reported in the
literature within the context of the full Euler equations.

We validate our simulations with Hammack’s linearized model. Then we carried out an inves-
tigation on the effects of nonlienearites on the generated wave.

This work is organized as follows: The governing equations, the conformal mapping technique
and its numerical implementation are presented in Section 2. The numerical experiments are shown
in Section 3 followed by our final conclusions and considerations.

2 Formulation
We examine an ideal, incompressible fluid with irrotational flow in a channel of finite depth.

The time-dependent seabed is represented as h0 + h(x, t) and the free surface as ζ(x, t), where h0
denotes a typical depth. Utilizing h0 as the horizontal and vertical length scale and (gh0)

1/2 as
the velocity scale, we derive the following dimensionless Euler equations.

∆ϕ = 0 for − 1 + h(x, t) < y < ζ(x, t), (1)
ϕy = ht + ϕxhx at y = −1 + h(x, t), (2)
ζt + ϕxζx − ϕy = 0 at y = ζ(x, t), (3)

ϕt +
1

2
(ϕ2x + ϕ2y) + ζ = 0 at y = ζ(x, t). (4)

We supplement these equations with periodic boundary conditions of period 2L.
Equations (1)-(4) are solved numerically by means of a conformal mapping combined to a

pseudo-spectral method which is presented next.

2.1 Conformal mapping for a time-dependent seabed
We compute a time-dependent conformal mapping f(ξ+ iη, t) = x(ξ, η, t)+ iy(ξ, η, t) to flatten

the free surface and seabed onto a strip of width D. Its components x(ξ, η, t) and y(ξ, η, t) are
harmonic functions of ξ and η and the imaginary part of the mapping satisfies the boundary
conditions: y(ξ, 0, t) = Y(ξ, t) and y(ξ,−D, t) = −1 + H(ξ, t) where H(ξ, t) = h(x(ξ,−D, t), t)
contains the information about the bottom corrugations and Y(ξ, t) contains the information about
the instantaneous free surface elevation.

The function y can be written in Fourier series as

y(ξ, η, t) = F−1
kj ̸=0

[
− coth(kjD) sinh(kjη)Ĥ

cosh(kjD)

]
+

1− Ĥ(0, t)

D
η.

+ F−1
kj ̸=0

[
sinh(kj(D + η))Ŷ

sinh(kjD)

]
+

(η +D)Ŷ(0, t)

D
,

(5)

and from the Cauchy-Riemann equations (xξ = yη) we can write the function x as

x(ξ, η, t) = F−1
kj ̸=0

[
i coth(kjD) cosh(kjη)Ĥ

cosh(kjD)

]
+

1− Ĥ(0, t)

D
ξ

+ F−1
kj ̸=0

[
−i cosh(kj(D + η))Ŷ

sinh(kjD)

]
+

Ŷ(0, t)

D
ξ.

(6)
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We are denoting the coefficients of the Fourier transform and its inverse respectively by

Fkj
[g(ξ)] = ĝ(kj) =

1

2L

∫ L

−L

g(ξ)e−ikjξ dξ and F−1
kj

[ĝ(kj)](ξ) =

∞∑
j=−∞

ĝ(kj)e
ikjξ.

The conformal mapping is a periodic function of ξ, and we can align its horizontal period with
that of the physical problem by selecting a suitable value for D. Here, the width of the strip is
expressed as D = 1− Ĥ(0, t) + Ŷ(0, t).

Let X(ξ, t) be the horizontal coordinate of the conformal mapping at η = 0 and Xb(ξ, t) be its
trace along the bottom η = −D. From (6) we have

Xb(ξ, t) = ξ + F−1
kj ̸=0

[
i tanh(kjD)Ĥ

]
+ F−1

kj ̸=0

[
i coth(kjD)

[
Ĥ

cosh2(kjD)
− Ŷ

cosh (kjD)

]]
. (7)

Note that equation (7) defines Xb(ξ, t) implicitly since H(ξ, t) = h(Xb, t). Following Flamarion and
Ribeiro [8] we compute Xb through a fixed point iterative scheme, which considers the topography
given directly into the physical domain, unlike Ruban [18].

2.2 Euler equations in the canonical coordinates

We use the conformal map as a new coordinate system. Let ϕ̄(ξ, η, t) = ϕ(x(ξ, η, t), y(ξ, η, t), t)
and ψ̄(ξ, η, t) = ψ(x(ξ, η, t), y(ξ, η, t), t) be the velocity potential and its harmonic conjugate in the
new variables ξ and η and denote by Φ(ξ, t) and Ψ(ξ, t) their values along η = 0.

Through Euler equations and after some manipulations inspired by the work of Milewski et al.
[15], we obtain the following uncoupled system

Yt = YξC
[
Ψξ(ξ, t)

J

]
−Xξ

Ψξ(ξ, t)

J
, (8)

Φt = ΦξC
[
Ψξ(ξ, t)

J

]
− 1

2J
(Φ2

ξ −Ψ2
ξ)−Y, (9)

where J = X2
ξ +Y2

ξ is the Jacobian evaluated at η = 0 and

C
[
Ψξ(ξ, t)

J

]
= C0

[
Ψξ(ξ, t)

J

]
−
〈
XξC0

[
Ψξ(ξ, t)

J

]
+Yξ

Ψξ(ξ, t)

J

〉
. (10)

The notation ⟨·⟩ refers to the zero mode of the Fourier Transform.
We calculate the time-dependent conformal map (see equations (5) and (6)) and the evolution

of the free surface as depicted above. From given initial conditions Y and Φ, these equations
are numerically solved using the fourth-order Runge-Kutta method, alongside Fourier spectral
discretization for the variable ξ, where all derivatives are computed spectrally via the Fast Fourier
Transform (FFT). Unless specified otherwise, we employ N = 212 modes in the FFT computation,
and the Runge-Kutta method uses a time step of 0.01.

3 Numerical experiments

We are interested in studying flows in which the seabed movement is characterized by a section
of the seabottom moving vertically either up or down. For this purpose, we consider a fluid
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domain of approximately 200 times the depth of the channel. In the middle of the domain the
seabed displacement is given by the function

h(x, t) =


z0 (1− cos(πt/T ))

(
1 + tanh(µ(b2 − x2))

)
2 (1 + tanh(µb2))

t ≤ T,

z0
(
1 + tanh(µ(b2 − x2))

)
1 + tanh(µb2)

t > T.

(11)

Note that when t = T the elevation (or depression) of the seabed stops and it reaches its maxi-
mum displacement z0. Unless mentioned otherwise, we use µ = 0.4. Furthermore, we approximate
the boundary conditions by periodic ones.

3.1 Benchmark
As shown in the seminal work of Hammack [9], the solution of the linearized version of the

equations (1)-(4) is ζ(x, t) = F−1

[
sech(kj)

∫ t

0
cos(ωj(t− s))ĥt(kj , t)ds

]
, where ω2

j = kj tanh (kj).

The sea bed elevation (11) is controlled by three parameters: z0, b and T . In this work, we shall
present the case related to the impulsive displacement, where b = 6.1 and T = 0.793. We compare
the free surface waves computed from the system (8)-(9) with those taken from Hammack’s model.
The models are quite similar especially during the wave generation phase for small topography
amplitudes. See figure 1, which shows the relative error between the nonlinear solution (ζE) to the
linear one (ζL) in respect to time, computed by the formula E(t) = ∥ζE(·, t)−ζL(·, t)∥2/∥ζL(·, t)∥2.

10-4

10-3

10-2

10-1

100

Figure 1: Relative difference between nonlinear and linear solutions versus time for the impulsive
regime, considering different values of z0.

3.2 Similarities and differences: linear vs. nonlinear model
Figure 2 displays four snapshots of the wave dynamic. During the generation phase, both

models exhibit similar behavior. However, nonlinear effects become apparent later on, with the
nonlinear wave propagating faster than the linear one. By t = 60, the nonlinear solution appears
less smooth compared to Hammack’s model.

When the seabed submerges the inverse phenomenon happens, the nonlinear solution is slower
than the linear one which is just a reflection along the x axis of the solution obtained from the
platform ascending. In order to show the different speeds of propagation we plot the linear and non
linear solutions at t = 28 for |z0| = 0.3 (see figure 3). The solution corresponding to the sinking
seabed has been reflected around the x axis for comparison.
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Figure 2: Snapshots of the waves generated for both models. Blue line: solution of the Euler
equations. Red line: solution of the linear model of Hammack. Black line: seabed. Parameter:
z0 = 0.3.
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Figure 3: Symmetry comparison with respect to x-axis. Blue-solid line refers to the nonlinear
solution obtained via the platform lifting and purple-dashed line represents the opposite of the
nonlinear solution via the platform lowering. The linear solutions are represented by the red and
black colors. Parameter: z0 = 0.3.

3.3 Passive and active generation

A traditional method for studying waves generated by a moving seabed involves translating
the seabed deformation to the free surface and propagating it, after the seafloor stabilizes into its
final position. This technique is known as passive generation. Conversely, when seabed motion is
directly integrated into wave generation, it is called active generation [4]. We explore the disparities
between passive and active generation within the framework of the full Euler equations. Previous
research in this area has primarily focused on the linear wave regime [4, 12], indicating that passive
generation is viable under conditions of rapid seabed displacement.

We present snapshots of wave dynamics in Figure 4. These snapshots reveal that while the
passive approach accurately captures the leading wave dynamics, it fails to predict subsequent
wave behavior, resulting in a spurious oscillatory tail. The error from passive generation was
approximately 16% relative to the solution obtained through active generation.

4 Conclusion

In this work, we presented a novel numerical method for solving the full Euler equations in the
presence of variable spatial and temporal topography, utilizing the conformal mapping technique
and spectral numerical methods. To validate our approach, we compared its predictions with solu-
tions obtained from Hammack’s linear model. Both models exhibited good qualitative agreement
for small topography displacements. However, for larger seabed displacements, significant differ-
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Figure 4: Snapshots of the nonlinear waves generated for passive and active approach. Blue line:
passive generation. Orange line: active generation. Black line: seabed. Parameters: z0 = 0.1 and
µ = 0.2.

ences emerged, especially during the propagation phase. Additionally, we demonstrated that the
nonlinear solution displays a non-symmetric profile with respect to the x-axis, contrasting with the
linear case.

Moreover, our investigation delved into passive generation, revealing that while this method
accurately captures the dynamics of the leading wave, it falls short in predicting subsequent wave
behavior.

Our method’s capability to handle nonlinear dynamics extends its applicability to a broad spec-
trum of problems, including landslides, interactions of solitary waves with variable-speed obstacles,
and other scenarios featuring complex topographies. Furthermore, the combination of conformal
mapping and spectral methods offers opportunities to explore diverse fluid dynamics and wave
propagation challenges in demanding environments such as coastal regions, underwater structures,
and atmospheric conditions. This not only deepens our comprehension of natural phenomena but
also facilitates practical applications in engineering and environmental studies. The ability to ad-
dress nonlinear dynamics and complex topographies enhances the significance and utility of the
numerical methods outlined in this study across various scientific disciplines, contributing to a com-
prehensive understanding of natural processes and supporting practical applications in engineering
and environmental research.
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