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Abstract. We explore optimal control problems in systems with uncertain parameters that follow
a probability distribution, aiming to optimize average performance. Known as Riemann-Stieltjes,
average, or ensemble optimal control, these problems are essential when parameter uncertainty
plays a significant role. We establish necessary conditions and analyze feedback control structures
for control-affine systems. By extending the Pontryagin Maximum Principle through a Hilbert
space approach, we characterize singular arcs, and numerical examples demonstrate the practical
applicability of our findings.
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1 Introduction

In this work, we examine optimal control problems in which parameters are described by
a probability distribution, aiming to optimize control strategies based on average performance.
Such problems, known as Riemann—Stieltjes optimal control, average-optimal control, or optimal
ensemble control problems, arise in various applications. The study focuses on necessary conditions
and feedback characterization for control-affine problems, with parameter uncertainty incorporated
to enhance practical insights. We consider an uncertain initial condition, which leads to an infinite-
dimensional problem. The mathematical formulation involves a dynamic system with constrained
control functions, and the objective is to minimize a cost functional integrated over a probability
measure. The control function belongs to an admissible set of bounded measurable functions. The
study extends prior research on necessary optimality conditions, particularly for parameterized
control problems. Previous studies have addressed cases with fixed initial conditions, uncertain
dynamics, and penalized optimization approaches. Notable contributions include applications in
aerospace, reinforcement learning, and numerical methods. The Pontryagin Maximum Principle
(PMP) has been used to establish necessary conditions for optimality in various settings.

This work builds on previous results by developing PMP conditions for problems with uncertain
initial conditions. The analysis treats the initial condition as an element of a Hilbert space, ac-
commodating infinite-dimensional settings. The results characterize singular arcs in feedback form
for scalar and vector-valued controls with commuting vector fields. Finally, numerical examples
illustrate the effectiveness and accuracy of the proposed approach.
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2 The Problem

We consider a Riemann-Stieltjes control problem when the initial data includes uncertain pa-
rameters, it results in a formulation within an infinite-dimensional space. More precisely, we are
dealing with the following problem

minimize J{u(+)] ::/Qg(x(T,w),w)du(w),

s.t.
(P) j"(tvw) :fO(wi)+Zfi($’w)ui(t)a
- a.e. t € [ty,T], w € Q, (1)
x(tg, w) = p(w), w e Q,
u(t) € U(t), a.e. t € [to, T,

where f;: R" x Q@ — R for : = 0,...,m, g: R" x Q — R and w : [tp,T] — R™ is the control
function, which belongs to the admissible controls set

Uadlto, T) :={u € L=(to, T;R™) : u(t) e U(t) a.e. t € [to,T]}, (2)

where U : [0,7] ~ R™ is a multifunction taking non-empty and closed values contained in a
compact subset U C R™. We investigate necessary optimality condition for problem (P) with
initial condition ¢, where ¢ : 0 — R™ is a measurable function, i.e., we suppose that ¢ belongs to
the space of measurable functions L?(u, 2;R™), given by

PR = {0 Q=R [ o) du(w) < o0},

which is a Hilbert space endowed with the scalar product
() = [ o) w(w)dule) for .0 € L2s, R,

We will use the notation ||-|| 2 to refer to the norm associated with the above scalar product. Here,
we redefine the dynamics as a map taking values in an infinite-dimensional space, more precisely,

we define the dynamics f : L?(u, Q; R?) x R™ — L?(u, Q;R") as

fle(),u) = fole(),) + Zf¢(¢(~)7 i (3)

2.1 Preliminaries

We will adopt the following set of assumptions, which we refer to hereafter as (HO):
(i) p is a probability measure defined over a complete separable metric space (£2, pa) and, for

a.e t € [to,T], U(t) is a non-empty, compact and convex subset of R™ and its graph GrU(-)
is a L x B™-measurable set.
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(ii) For every ¢ = 0,1,...,m, there exist constants ¢;, k; > 0 such that, for every z,2’ € R",
w € Q, f; satisfies

[fil,w)| < ei(1+ |z)) (4)
and
|fi(z,w) — fi(z',w)| < kijxz — 2’|, forall i=0,1,..,m. (5)

(iii) The function g : R™ xQ — R is B™ X Bo-measurable and there exist positive constants kg > 1
and M such that, for all z,2’ € R", w € (,

{ lg(a,w)| < M,

9, @) — g(a’,w)| < kylo — ']

(6)

An admissible process (u,{z(.,w) : w € Q}) consists of a control function u belonging to
U,alto, T, coupled with its associated family of arcs {z(.,w) € WH1([0,T],R") : w € Q} such that,
for each w € Q, x(-,w) is solution of the following evolution integral equation

z(t,w) = p(w) + /t folz(oyw),w) + Z filz(o,w),w) u;(o) do. (7)

If there exists a process (4, {Z(.,w) : w € N}) solving problem (P), then it is called optimal pair,
and we will refer to T and u as optimal trajectory and control, respectively.

Definition 2.1 (W !-local minimizer). A process (i, {Z(-,w) : w € Q}), is said to be an Wt -local
minimizer for (P) if there exists € > 0 such that

[ a@Tw))dute) < [ ol )dnte),
for all admissible processes (u, {z(-,w) : w € Q}) such that
Z(.,w) = 2(., w)lwiio,rrny < €, Yw € supp(p).

We recall the assumptions and results established by Bettiol-Khalil in [3]. Given a W11-local

minimizer (4, {Z(-,w) : w € Q}) and § > 0, we shall refer to the following set of assumptions as
(H1):

(i) There is a modulus of continuity 6; : [0,00) — [0, 00) such that, for all w,wy,ws € Q,

T
/ sup (b uwn) — (6w wn)|dt < 0 (palwrsws))
to z€T(t,w)+dB,ucU/(t)

(i) g(.,w) is differentiable on Z(T,w)+dB, for each w € Q, V;¢(.,w) is continuous on Z(T,w)+ 0B
and V,g(z,-) is continuous on £;

(iii) © — f(t,z,u,w) is continuously differentiable on Z(t,w) 4+ éB for all u € U(t), w € Q a.e.
t € [to, T], and w — V, f(t,z,u,w) is continuous uniformly with respect to (¢, z,u).

(iv) We assume that the functions f; are twice continuously differentiable on Z(t,w) + dB for all
w € Q and a.e. t € [tg, T] and there exists CJ’E > 0 such that, for i € {0,...,m},k=1,2,

85616‘ (Z(t,w),w)| < C’]?i, w € supp(p), a.e. t €[0,T7;
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3 Necessary Optimality Conditions

3.1 Necessary Conditions

Before studying the necessary optimality conditions for problem (P) with an uncertain initial
condition ¢ € L?(u, Q;R™), we first establish the existence of an optimal control (see [2]). Then,
using technical results, we derive the Pontryagin Maximum Principle (PMP) in Theorem 3.1. We
begin with the following result.

Lemma 3.1. Suppose that g is differentiable with respect to T, and that V.g(-,+) is continuous.
Set & > 0. Then for all p € Z(T,-) + 0B, the functional

T(p) = / 9 (), w)d(w)

is Fréchet differentiable in @, and the derivative of J in ¢ is the functional DJ (¢) € L?(u, 2;R™)*
given by

DI () = / Vo g(p(w), w) - $(w) dp(w). (8)

Note that, by the Riesz Representation Theorem, V.g(p(-),-) € L*(u, Q;R™) is the unique repre-
sentative of the derivative of J. Thus, we denote the derivative as DJ () := V().

The following result on necessary conditions is based on those obtained in [4].

Theorem 3.1. Assume that assumptions (HO) and (H1) hold, and that f is Fréchet differen-
tiable with respect to x. Let (Z,u) be a Whllocal minimizer for (P) and set the functional
p:= V.g(Z(T)). Then, the solution of the backward problem

70 = (Faoam) s, e o o)

satisfies the Maximum Principle

/Qp(t?w)f(g’c(t,w),ﬂ(t),w)du(w) = urélgé)/Qp(t7w)f(si(t7w),u,w)du(w) a.et € [0,7]. (10)

4 Scalar Control Variable

In this section, we assume that the control variable is scalar, i.e., m = 1. Given two smooth
vector fields f, g : R™ — R"™, the Lie bracket [f, g] is a new vector field defined as:

f9l=4f—fg.

Theorem 4.1 (Characterization of the optimal control for the scalar control-affine case). Let
Assumptions (H0) and (H1) hold. Then, there exists a Wt -minimizer (4, {Z(.,w) : w € Q}) with
p as in Theorem 8.1. Additionally, the optimal control u satisfies the conditions

Umax if U(t) >0,
@(t) = < Umin if U(t) <0, (11)
singular if U(t) =0,
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where ¥ is the switching function that is given by

wwzlgmwﬁ@@wmmm. (12)

Moreover, over singular arcs, the control u satisfies

/pm¢mﬁwmw+a/pm¢mﬁwmw=a (13)
Q Q

5 Numerical Examples

5.1 Numerical Scheme

In order to numerically solve the problem (P), we use the sample average approximation method.
Specifically, at each iteration k a finite random set ), = {wF}¥ | of independent and identically
p-distributed samplings is selected from the parameter space (2 and the following a classical finite-
dimensional optimal control problem is considered:

k

C 1

minimize Jg[u(-) =% g g(z: (T, ouz f),

.t

(P) )
i(t,wh) = fo(ailt,wh +Zf, zi(t,wl), whu(t), (14
1=1
2(0,0) = @(h), i=1,...k.
In the case of known initial condition g, one set p(wF) = z¢, for i = 1,..., k. In this section, we

assume that the set of admissible controls is defined by
Uag == {u € L™ (to, T;R™) N L*(0, T;R™) : u(t) € U(t) ae. t €[0,T]}.

Note that, Ung is a complete, separable metric space with respect to the L?-topology. Consequently,
we can apply the numerical scheme developed in [6].

5.2 Example: Optimizing Fishing Strategies

In this subsection, we consider a modified version of the optimal fishing problem presented in
[1] as an illustrative example. Let z(¢,w) denote the size of the halibut fish population at time
t, corresponding to w. The control u(t) € R represents the fishing effort per unit time, and the
objective is to maximize the average fishing revenue over the fixed time interval [0,T]. We obtain
the following model:

maximize J[u / / < )>u(t)Umaxdtdu(w)

s.t.
z(t,w) = r(w)z(t,w) (1 — wk(f:))) — u(t)Upax a.e. on [0,7],
0<u(t) <1 a.e. onl0,T],
2(0,w) = p(w)
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with fixed parameters T = 10, £ = 1, ¢ = 17.5, Upax = 20; and stochastic parameters ¢ ~
TN(70,5,40,90), r ~ TN(0.71,0.05,0.1,1), k ~ TN(80.5,10,65,95), where TN (u,0,a,b) de-
notes the truncated normal distribution with mean u, standard deviation o, and support in the
interval [a, ], as in [5].

From Theorem 4.1, we obtain an explicit formula for the optimal control of problem (15), which
is then compared with the solution obtained numerically using Python (Figura 1).
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Figura 1: In green, optimal control calculated with the formula derived in theorem 4.1. In dashed

red, the optimal control is calculated with the GEKKO library. In blue, the switching function ¥
given by (12). Source: Authors.

The graphs of the relative cost distance (Figura 2) and the relative control distance (Figura 3)

between successive iterations exhibit a decreasing trend toward zero, indicating convergence and
stability of the proposed method.
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Figura 2: Cost relative distance between suc- Figura 3: Control relative distance between

cessive iterations. Source: Authors. successive iterations. Source: Authors.

6 Conclusions

In this work, we explicitly characterize the optimal control for the Riemann—Stieltjes optimal
control problem. To this end, we apply Pontryagin’s Maximum Principle to derive necessary
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conditions for optimality. Our approach is formulated in an infinite-dimensional space, as the
initial condition can be treated as an element of a Hilbert space. This enables a rigorous analysis
of the control structure under uncertainty.

Numerical results confirm the effectiveness of our approach. The resulting control trajectories
closely match those obtained using Python’s GEKKO optimization package, validating our theo-
retical findings (Figura 1). Notably, the iterative reduction in both relative cost (Figura 2) and
control distances (Figura 3), converging toward zero, highlights the stability and convergence of the
proposed method. These findings demonstrate the robustness of the framework and its potential
applicability to a broad class of uncertain optimal control problems. Future work may explore
extensions to more general system dynamics and alternative numerical solution techniques
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