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Resumo. Este artigo propoe uma metodologia hibrida de clusterizagdo, combinando algoritmos
fuzzy c-means e hierdrquico, para anélise taxonomica de espécies da classe Kinetoplastea, utilizando
sequéncias de DNA nao alinhadas. O pré-processamento envolveu calculo de distancias baseado em
k-mers, gerando uma matriz de distancias. Os resultados identificaram cinco grupos geneticamente
distintos, validados pelos métodos de correlacdo cophenetica, coeficiente de particao fuzzy e inercia,
refletindo relagoes evolutivas e distingdes entre parasitas e espécies de vida livre. O método apre-
sentou resultados promissores, oferecendo uma alternativa para estudos taxondémicos em biologia
computacional.
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1 Introducao

A cada dia s@o observados avangos em inteligencia artificial (AI) aplicados em muitas éareas,
seja na aplica¢do académica ou no dia a dia. Aprendizado de maquina (AM) é uma area da IA que
tem como objetivo desenvolver técnicas computacionais sobre aprendizado, capazes de adquirir
conhecimento de forma automética [10]. Na area da satde, AM ja foi utilizada para predi¢ao
de genes marcadores de doengas [7], para analise de desempenho de sistemas de vigilancia da
febre maculosa no Rio de Janeiro [8] e diagnostico precoce por imagem de doengas mamaérias [13].
Técnicas de AM também ja foram utilizadas para diferenciacdo de arbovirus em mosquitos Aedes
aegypti a partir de espectros de infra-vermelho proximo [6].

Em AM, a taxonomia é considerado um problema de clusterizagao no qual o objetivo é agrupar
objetos mais similares entre si, e separar os objetivos mais distintos [12]. Eles tém sido empregados
na taxonomia [4], [9], utilizando mapas auto-organizados hiperbélicos (hyperbolic Self-Organizing
maps (H2 SOMs)) como ferramenta para agrupar pequenos fragmentos de DNA de 350 organis-
mos procariotos em seis niveis taxonomicos. [2] utilizou AM para identificar linhagens distintas
de Mycobacterium tuberculosis, fornecendo uma ferramenta on-line 1util na classificacdo de novas
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espécies. Ja [5] utilizou algoritmos de AM nao supervisionados, para delimitagdo de uma espécie
de aracnideo com alta estrutura genética populacional.

A clusterizacao baseada em sequéncias livres de alinhamento tem se tornado uma abordagem
cada vez mais relevante, especialmente devido as limitagoes das anélises tradicionais baseadas em
alinhamentos. Segundo [15], essas abordagens enfrentam desafios como o alto custo computacional,
a natureza NP-dificil do alinhamento multiplo e a dependéncia de pardmetros, principalmente na
etapa de inicializacao. Para superar essas limitagoes, este trabalho propoe o uso de algoritmos de
clusterizagio baseados em logica fuzzy [3], que oferecem maior flexibilidade e sdo mais adequados
para lidar com a incerteza e a imprecisao presentes nos dados biologicos. Além disso, empregou-se
a clusterizacao hierarquica [11] para inferir relagoes de proximidade entre espécies. Diferentemente
das abordagens convencionais, nossa metodologia trabalha diretamente com sequéncias de nucleo-
tideos nao alinhadas de espécies da classe Kinetoplastea, permitindo uma anéalise mais robusta e
adaptavel & complexidade evolutiva desse grupo.

As espécies de Kinetoplastea analisadas nesse trabalho incluem: Trypanosoma cruzi (I, Tcl,
Tcla, II, IV e Tcbat), Marinkellei , Dionisii, Rangeli, Trypanosomasp,Janseni, Neobat, Lewisi,
Cascavelli, Minasense, Crithidia, Leishmania_ infantum, Neobodo Designis, Parabodo _ Caudatus,
Parabodo e Bodonidae.

2 Metodologia

2.1 Pré Processamento

Sequéncias sem alinhamento em formato .fasta foram pré processadas para obter uma matriz
de distancia. O método baseado em frequéncia de palavras entre duas sequéncia de nucleotideos X
e Y de tamanhos diferentes, parte do principio que sequéncias semelhantes compartilham palavras
semelhantes [15]. Os k — mers, sdo subsequéncias de comprimento k onde k € N. Esse processo é
dividido em trés etapas.

Primeiro, as sequéncias comparadas foram divididas em colegoes de palavras tnicas de um
determinado comprimento. Como exemplo vamos considerar duas sequencias de DNA:

X =ATGTGTG
Y = CATGTG

Separando-as em sequéncias de trés nucleotideos (3 — mers). Assim foram produzidos dois
conjuntos de palavras:

Wx ={ATG, TGT,GTG, TGT,GTC}
Wy = {CAT,ATG, TGT,GTG}
Fazendo a uniao dos elementos dos conjuntos Wx e Wy, excluindo as palavras repetidas, tem-se:
W3 = Wi UWs = {CAT, ATG, TGT,GTG} (1)

O segundo passo consistiu em construir dois vetores com dimensao igual a de W3, contando
o namero de vezes que cada palavra de W3 aparece em Wx e Wy. Com isso determinou-se dois
vetores:

C5 =(0,1,2,2)
Cy =(1,1,1,1)
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Finalmente a terceira etapa consistiu em calcular a dissimilaridade ente O3 e CY .

DY =105 — Y| =vVO-12+ 112+ (2-12++2-1)2=V3=1,73  (2)

Diversas medidas de distdncia podem ser aplicadas, porém, neste trabalho, foi utilizado a
distancia euclidiana.

A matriz de distancia, com todos os valores, foi desenvolvida em Python usando as bibliotecas
csv, math, Bio.SeqIO e numpy. Essa matriz serve como entrada no algoritmos que sera exposto
na subsecao seguinte.

2.2 Clusterizacao

O codigo para clusterizagao foi desenvolvido em Python usando as bibliotecas numpy, pandas,
skfuzzy, scipy, matplotlib e sklearn. As configuragGes iniciais incluiram o arquivo de entrada,
onde a matriz de distancias esta armazenada, e os pardmetros para o nimero de clusters e iteragoes
a serem realizados.

A matriz de distancias foi carregada a partir de um arquivo .csv e normalizada usando o método
MinMazScaler. Essa etapa garante que os valores estejam em uma escala uniforme, essencial para
o desempenho do algoritmo de clustering.

O codigo é uma mescla de dois algoritmos o fuzzy c-means e o hierarquico, visando obter o
melhor dos dois algoritmos para melhor anélise dos agrupamentos. A analise hierarquica é feita
por meio da construcao de uma matriz de dissimilaridade derivada dos graus de pertinéncia. Essa
matriz é usada para calcular uma matriz de ligagao hierarquica, que serve de base para a criagao
do dendrograma.

Foram calculadas duas inércias complementares para avaliar o clustering: as inércias fuzzy
(WCSS - Within-Cluster Sum of Squares) e a do dendrograma (BSS - Between-Cluster Sum of
Squares) [1]. A meétrica (BSS) foi calculada como a soma das distancias quadraticas entre os
centroides de cada cluster e o centroide global (média geral dos dados). A inércia fuzzy (WCSS) é a
soma ponderada das distancias quadraticas entre os dados e os centroides dos clusters, considerando
os graus de pertinéncia. Juntas, essas métricas equilibram coesao interna e distingao entre clusters.

A cada uma das dez iteracoes, foram geradas e salvos graficos do dendrograma e dos graus de
pertinéncia dos elementos, organizados em um diretério especifico. Os resultados de cada iteragao
incluiram métricas como: o coeficiente cophenético, o coeficiente de partigdo fuzzy (FPC) e inércia
total (sendo a soma WCSS + BSS). Essas foram armazenadas em um arquivo .csv.

Ao final do processo, um grafico adicional foi criado para mostrar a variacdo da inércia total
ao longo das iteragoes, evidenciando a evolugao do processo de clustering. Todos os resultados e
graficos foram salvos em arquivos organizados, e o cdédigo fornece um resumo dos locais onde esses
dados podem ser encontrados.

3 Resultados

A analise dos clusters foi conduzida utilizando as métricas de validagao mencionadas na segao
anterior, complementadas pela avaliagao de especialistas do Laboratério de Biologia de Tripano-
somatideos (IOC-FIOCRUZ).

Dentre os resultados obtidos, aquele que melhor agrupou as espécies esta apresentado na Figura
1. A correlagao cophenética desse agrupamento é de 0.9613, indicando uma forte correspondéncia
entre o dendrograma e as distancias reais entre os pontos de dados. A correlagao cophenética
aplicada ao dendrograma, varia de 0 a 1. Valores proximos de 1 indicam uma clusterizagao bem
ajustada [14] por isso reforga a alta qualidade do agrupamento. Para a parte relacionada aos graus
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de pertinéncia foi usado o FPC |, que uma medida de validagao que assume valores no intervalo
[0, 1], sendo 1 o melhor apresenta 0.6787 para o FPC.

Dendrograma - Iteragéo 9
FPC: 0.6787, Cophenetic Corr.: 0.9579
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Figura 1: Dendrograma e distribui¢ao fuzzy referente a clusterizagio taxondmica das espécies da classe
Kinetoplastea. Fonte: O autor.

O gréfico da Figura 2 que mostra a inércia total relativa as iteragoes mede o quao compactos
os clusters estao, ou seja, a soma das distancias quadradas entre os pontos e seus respectivos cen-
troides. Quanto menor a inércia, mais proximos os pontos estdao do centro do cluster. A inércia
total indica qual a melhor distribuicao das espécies em cada cluster. Observando os valores, a
inércia total oscila levemente, mantendo-se entre 208.190 e 208.215. Isso sugere que o algoritmo de
clusterizagdo estabilizou rapidamente e ndo ha mudancas significativas na qualidade da parti¢do
ap6s algumas iteragoes. Esse comportamento pode indicar que os centréides ja convergiram para
uma solugao proxima do 6timo. Sendo assim, depois dessas anélises, e da discussdo com especia-
listas sugerimos que o melhor agrupamento é o que aparece na iteragao 9, apresentada na Figura
2. A escolha por esse agrupamento deve-se & sua capacidade de separar espécies de vida livre dos
parasitas e, entre os parasitas, distinguir 7. cruzi, Rangeli e demais espécies, refletindo melhor
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suas relagoes biologicas.
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Figura 2: Grafico de inércia total por interagdo. Fonte: O autor.

Os clusters apresentados na Figura 1 refletidos na Tabela 1, foram gerados automaticamente
pelo algoritmo de agrupamento, sem um critério biolégico pré-definido. No entanto, ao analisar os
grupos formados, pode-se identificar padrdes interessantes que refletem proximidade genética entre
as espécies.

O Cluster 1 é composto apenas por Cascavelli, que infecta serpentes. Essa espécie esta
separada das demais por uma distancia de aproximadamente 1.2, indicando que é geneticamente
distinta dos outros tripanosomas.

O Cluster 2 reune diferentes sequéncias de gendtipos e subespécie de Trypanosoma cruzi,
incluindo T.cruzi II, T.cruziTCI, T.cruziTCla, entre outras. Essas espécies estao conectadas por
distancias pequenas, entre 0.2 e 0.4, o que indica alta similaridade genética. Esse agrupamento é
esperado, pois T. cruzi compartilha um ancestral comum bem definido, caracterizando um grupo
monofilético.

O Cluster 3 é formado por subgrupos de Trypanosoma rangeli (Rangeli (A, B, D e E). As
distancias intra cluster variaram entre em valores inferires a 0.2, sugerindo que essas variantes
pertencem a uma espécie, mas com diferencas genéticas considerédveis. Esse grupo esta mais distante
de T. cruzi, reforcando que sdo espécies distintas, embora compartilhem um ancestral comum mais
remoto.

O Cluster 4 inclui espécies de vida livre, como Neobodo_ Designis e Parabodo _ caudatus. Essas
espécies apresentam distancias superiores a 1.0 em relagao aos outros clusters, refletindo uma
grande divergéncia genética, o que sugere que estao taxonomicamente distantes dos tripanosomas
parasitas.

Por fim, o Cluster 5 agrupa uma miscelanea de espécies parasitas, incluindo Neobat, Trypa-
nosomasp, Lewisi, Janseni, Leishmania_infantum, Crithidia, Leishmania, Minasense, Dionisii e
Bodonidae. As distancias dentro desse cluster variaram de 0.5 a 1.0, sugerindo que algumas dessas
espécies podem estar mais proximas de certos tripanosomas do que de outras dentro do proprio
grupo. Isso pode indicar a necessidade de uma anélise mais detalhada para melhor compreensao
das relagoes evolutivas dessas espécies.
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Tabela 1: Espécies por clusters.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Cascavelli  Marinkellei Rangeli A Neobodo_ Designis Neobat
T. cruziTcBat  Rangeli E  Parabodo Caudatus Trypanosomasp
T. cruzi IV~ Rangeli B Parabodo Lewisi
T. cruz 1 Rangeli D Jansent
T. cruzi 11 Leishmania__ infantum
T. cruzi'Tcl Crithidia
T. cruziTcla Leishmania
Minasense
Bodonidae
Dionisii

Os graus de pertinéncia (Figura 1) refor¢am a estrutura dos clusters formados. Espécies dentro
de grupos bem definidos, como Cascavelli (Cluster 1), T. cruzi (Cluster 2) e Rangeli (Cluster
3), apresentam altos valores de pertinéncia, indicando uma classifica¢do consistente. No Cluster
4, composto por espécies de vida livre, a pertinéncia também é elevada, refletindo sua distingao
genética em relacao aos parasitas. Ja no Cluster 5, algumas espécies exibem pertinéncias inter-
mediarias, sugerindo que podem compartilhar caracteristicas genéticas com mais de um grupo.
Isso pode indicar transigao evolutiva, variacao genética interna ou a necessidade de refinamento na
defini¢ao desse cluster.

4 Conclusao

A abordagem hibrida (fuzzy c-means + clusterizagao hierarquica) mostrou-se promissora para
clusterizagao envolvendo espécies Kinetoplastea com sequéncias nao alinhadas. A estratégia base-
ada em k-mers evitou alinhamentos complexos, identificando cinco clusters geneticamente distintos,
validados por alta correlagao cophenética (0,96), FPC 0.6787 e especialistas. A analise da métrica
de inercia agregadas a clusterizacao, também contribuiu para a melhor escolha de distribuicao das
espécies dentro dos clusters.

Sugere-se aplicar o método a outros géneros, explorando diferentes técnicas para a construgao da
matriz de distdncias, como cadeias de Markov e integral fuzzy. Além disso, recomenda-se incorporar
métricas adicionais para a validagao dos clusters e aprimorar a visualizagao da distribuicao das
espécies nos grupos.
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