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Resumo. Este artigo propõe uma metodologia híbrida de clusterização, combinando algoritmos
fuzzy c-means e hierárquico, para análise taxonômica de espécies da classe Kinetoplastea, utilizando
sequências de DNA não alinhadas. O pré-processamento envolveu cálculo de distâncias baseado em
k-mers, gerando uma matriz de distâncias. Os resultados identificaram cinco grupos geneticamente
distintos, validados pelos métodos de correlação cophenetica, coeficiente de partição fuzzy e inercia,
refletindo relações evolutivas e distinções entre parasitas e espécies de vida livre. O método apre-
sentou resultados promissores, oferecendo uma alternativa para estudos taxonômicos em biologia
computacional.

Palavras-chave. Aprendizado de Maquina, Lógica Fuzzy, Clusterização, Taxonomia, Sequências
não Alinhadas

1 Introdução
A cada dia são observados avanços em inteligencia artificial (AI) aplicados em muitas áreas,

seja na aplicação acadêmica ou no dia a dia. Aprendizado de máquina (AM) é uma área da IA que
tem como objetivo desenvolver técnicas computacionais sobre aprendizado, capazes de adquirir
conhecimento de forma automática [10]. Na área da saúde, AM já foi utilizada para predição
de genes marcadores de doenças [7], para análise de desempenho de sistemas de vigilância da
febre maculosa no Rio de Janeiro [8] e diagnóstico precoce por imagem de doenças mamárias [13].
Técnicas de AM também já foram utilizadas para diferenciação de arbovírus em mosquitos Aedes
aegypti a partir de espectros de infra-vermelho próximo [6].

Em AM, a taxonomia é considerado um problema de clusterização no qual o objetivo é agrupar
objetos mais similares entre si, e separar os objetivos mais distintos [12]. Eles têm sido empregados
na taxonomia [4], [9], utilizando mapas auto-organizados hiperbólicos (hyperbolic Self-Organizing
maps (H² SOMs)) como ferramenta para agrupar pequenos fragmentos de DNA de 350 organis-
mos procariotos em seis níveis taxonômicos. [2] utilizou AM para identificar linhagens distintas
de Mycobacterium tuberculosis, fornecendo uma ferramenta on-line útil na classificação de novas
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espécies. Já [5] utilizou algoritmos de AM não supervisionados, para delimitação de uma espécie
de aracnídeo com alta estrutura genética populacional.

A clusterização baseada em sequências livres de alinhamento tem se tornado uma abordagem
cada vez mais relevante, especialmente devido às limitações das análises tradicionais baseadas em
alinhamentos. Segundo [15], essas abordagens enfrentam desafios como o alto custo computacional,
a natureza NP-difícil do alinhamento múltiplo e a dependência de parâmetros, principalmente na
etapa de inicialização. Para superar essas limitações, este trabalho propoe o uso de algoritmos de
clusterização baseados em lógica fuzzy [3], que oferecem maior flexibilidade e são mais adequados
para lidar com a incerteza e a imprecisão presentes nos dados biológicos. Além disso, empregou-se
a clusterização hierárquica [11] para inferir relações de proximidade entre espécies. Diferentemente
das abordagens convencionais, nossa metodologia trabalha diretamente com sequências de nucleo-
tídeos não alinhadas de espécies da classe Kinetoplastea, permitindo uma análise mais robusta e
adaptável à complexidade evolutiva desse grupo.

As espécies de Kinetoplastea analisadas nesse trabalho incluem: Trypanosoma cruzi (I, TcI,
TcIa, II, IV e Tcbat), Marinkellei , Dionisii, Rangeli, Trypanosomasp,Janseni, Neobat, Lewisi,
Cascavelli, Minasense, Crithidia, Leishmania_ infantum, Neobodo_Designis, Parabodo_Caudatus,
Parabodo e Bodonidae.

2 Metodologia

2.1 Pré Processamento

Sequências sem alinhamento em formato .fasta foram pré processadas para obter uma matriz
de distância. O método baseado em frequência de palavras entre duas sequência de nucleotídeos X
e Y de tamanhos diferentes, parte do princípio que sequências semelhantes compartilham palavras
semelhantes [15]. Os k −mers, são subsequências de comprimento k onde k ∈ N. Esse processo é
dividido em três etapas.

Primeiro, as sequências comparadas foram divididas em coleções de palavras únicas de um
determinado comprimento. Como exemplo vamos considerar duas sequencias de DNA:

X = ATGTGTG

Y = CATGTG

Separando-as em sequências de três nucleotídeos (3 − mers). Assim foram produzidos dois
conjuntos de palavras:

WX = {ATG, TGT,GTG, TGT,GTC}

WY = {CAT,ATG, TGT,GTG}

Fazendo a união dos elementos dos conjuntos WX e WY , excluindo as palavras repetidas, tem-se:

W3 = W 3
X ∪W 3

Y = {CAT,ATG, TGT,GTG} (1)

O segundo passo consistiu em construir dois vetores com dimensão igual a de W3, contando
o número de vezes que cada palavra de W3 aparece em WX e WY . Com isso determinou-se dois
vetores:

CX
3 = (0, 1, 2, 2)

CY
3 = (1, 1, 1, 1)
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Finalmente a terceira etapa consistiu em calcular a dissimilaridade ente CX
3 e CY

3 .

DX,Y
3 = ||CX

3 − CY
3 || =

√
(0− 1)2 + (1− 1)2 + (2− 1)2 ++(2− 1)2 =

√
3 = 1, 73 (2)

Diversas medidas de distância podem ser aplicadas, porém, neste trabalho, foi utilizado a
distância euclidiana.

A matriz de distância, com todos os valores, foi desenvolvida em Python usando as bibliotecas
csv, math, Bio.SeqIO e numpy. Essa matriz serve como entrada no algoritmos que sera exposto
na subseção seguinte.

2.2 Clusterização

O código para clusterização foi desenvolvido em Python usando as bibliotecas numpy, pandas,
skfuzzy, scipy, matplotlib e sklearn. As configurações iniciais incluíram o arquivo de entrada,
onde a matriz de distâncias está armazenada, e os parâmetros para o número de clusters e iterações
a serem realizados.

A matriz de distâncias foi carregada a partir de um arquivo .csv e normalizada usando o método
MinMaxScaler. Essa etapa garante que os valores estejam em uma escala uniforme, essencial para
o desempenho do algoritmo de clustering.

O código é uma mescla de dois algoritmos o fuzzy c-means e o hierárquico, visando obter o
melhor dos dois algoritmos para melhor análise dos agrupamentos. A análise hierárquica é feita
por meio da construção de uma matriz de dissimilaridade derivada dos graus de pertinência. Essa
matriz é usada para calcular uma matriz de ligação hierárquica, que serve de base para a criação
do dendrograma.

Foram calculadas duas inércias complementares para avaliar o clustering: as inércias fuzzy
(WCSS - Within-Cluster Sum of Squares) e a do dendrograma (BSS - Between-Cluster Sum of
Squares) [1]. A métrica (BSS) foi calculada como a soma das distâncias quadráticas entre os
centróides de cada cluster e o centróide global (média geral dos dados). A inércia fuzzy (WCSS) é a
soma ponderada das distâncias quadráticas entre os dados e os centróides dos clusters, considerando
os graus de pertinência. Juntas, essas métricas equilibram coesão interna e distinção entre clusters.

A cada uma das dez iterações, foram geradas e salvos gráficos do dendrograma e dos graus de
pertinência dos elementos, organizados em um diretório específico. Os resultados de cada iteração
incluíram métricas como: o coeficiente cophenético, o coeficiente de partição fuzzy (FPC) e inércia
total (sendo a soma WCSS +BSS). Essas foram armazenadas em um arquivo .csv.

Ao final do processo, um gráfico adicional foi criado para mostrar a variação da inércia total
ao longo das iterações, evidenciando a evolução do processo de clustering. Todos os resultados e
gráficos foram salvos em arquivos organizados, e o código fornece um resumo dos locais onde esses
dados podem ser encontrados.

3 Resultados

A análise dos clusters foi conduzida utilizando as métricas de validação mencionadas na seção
anterior, complementadas pela avaliação de especialistas do Laboratório de Biologia de Tripano-
somatídeos (IOC-FIOCRUZ).

Dentre os resultados obtidos, aquele que melhor agrupou as espécies está apresentado na Figura
1. A correlação cophenética desse agrupamento é de 0.9613, indicando uma forte correspondência
entre o dendrograma e as distâncias reais entre os pontos de dados. A correlação cophenética
aplicada ao dendrograma, varia de 0 a 1. Valores próximos de 1 indicam uma clusterização bem
ajustada [14] por isso reforça a alta qualidade do agrupamento. Para a parte relacionada aos graus
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de pertinência foi usado o FPC , que uma medida de validação que assume valores no intervalo
[0, 1], sendo 1 o melhor apresenta 0.6787 para o FPC.
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Figura 1: Dendrograma e distribuição fuzzy referente a clusterização taxonômica das espécies da classe
Kinetoplastea. Fonte: O autor.

O gráfico da Figura 2 que mostra a inércia total relativa as iterações mede o quão compactos
os clusters estão, ou seja, a soma das distâncias quadradas entre os pontos e seus respectivos cen-
tróides. Quanto menor a inércia, mais próximos os pontos estão do centro do cluster. A inércia
total indica qual a melhor distribuição das espécies em cada cluster. Observando os valores, a
inércia total oscila levemente, mantendo-se entre 208.190 e 208.215. Isso sugere que o algoritmo de
clusterização estabilizou rapidamente e não há mudanças significativas na qualidade da partição
após algumas iterações. Esse comportamento pode indicar que os centróides já convergiram para
uma solução próxima do ótimo. Sendo assim, depois dessas análises, e da discussão com especia-
listas sugerimos que o melhor agrupamento é o que aparece na iteração 9, apresentada na Figura
2. A escolha por esse agrupamento deve-se à sua capacidade de separar espécies de vida livre dos
parasitas e, entre os parasitas, distinguir T. cruzi, Rangeli e demais espécies, refletindo melhor
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suas relações biológicas.

Figura 2: Gráfico de inércia total por interação. Fonte: O autor.

Os clusters apresentados na Figura 1 refletidos na Tabela 1, foram gerados automaticamente
pelo algoritmo de agrupamento, sem um critério biológico pré-definido. No entanto, ao analisar os
grupos formados, pode-se identificar padrões interessantes que refletem proximidade genética entre
as espécies.

O Cluster 1 é composto apenas por Cascavelli, que infecta serpentes. Essa espécie está
separada das demais por uma distância de aproximadamente 1.2, indicando que é geneticamente
distinta dos outros tripanosomas.

O Cluster 2 reúne diferentes sequências de genótipos e subespécie de Trypanosoma cruzi,
incluindo T.cruzi_II, T.cruziTCI, T.cruziTCIa, entre outras. Essas espécies estão conectadas por
distâncias pequenas, entre 0.2 e 0.4, o que indica alta similaridade genética. Esse agrupamento é
esperado, pois T. cruzi compartilha um ancestral comum bem definido, caracterizando um grupo
monofilético.

O Cluster 3 é formado por subgrupos de Trypanosoma rangeli (Rangeli (A, B, D e E). As
distâncias intra cluster variaram entre em valores inferires a 0.2, sugerindo que essas variantes
pertencem a uma espécie, mas com diferenças genéticas consideráveis. Esse grupo está mais distante
de T. cruzi, reforçando que são espécies distintas, embora compartilhem um ancestral comum mais
remoto.

O Cluster 4 inclui espécies de vida livre, como Neobodo_Designis e Parabodo_caudatus. Essas
espécies apresentam distâncias superiores a 1.0 em relação aos outros clusters, refletindo uma
grande divergência genética, o que sugere que estão taxonomicamente distantes dos tripanosomas
parasitas.

Por fim, o Cluster 5 agrupa uma miscelânea de espécies parasitas, incluindo Neobat, Trypa-
nosomasp, Lewisi, Janseni, Leishmania_infantum, Crithidia, Leishmania, Minasense, Dionisii e
Bodonidae. As distâncias dentro desse cluster variaram de 0.5 a 1.0, sugerindo que algumas dessas
espécies podem estar mais próximas de certos tripanosomas do que de outras dentro do próprio
grupo. Isso pode indicar a necessidade de uma análise mais detalhada para melhor compreensão
das relações evolutivas dessas espécies.
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Tabela 1: Espécies por clusters.
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Cascavelli Marinkellei Rangeli_A Neobodo_Designis Neobat

T. cruziTcBat Rangeli_E Parabodo_Caudatus Trypanosomasp
T. cruzi_IV Rangeli_B Parabodo Lewisi
T. cruzi_I Rangeli_D Janseni
T. cruzi_II Leishmania_infantum
T. cruziTcI Crithidia
T. cruziTcIa Leishmania

Minasense
Bodonidae
Dionisii

Os graus de pertinência (Figura 1) reforçam a estrutura dos clusters formados. Espécies dentro
de grupos bem definidos, como Cascavelli (Cluster 1), T. cruzi (Cluster 2) e Rangeli (Cluster
3), apresentam altos valores de pertinência, indicando uma classificação consistente. No Cluster
4, composto por espécies de vida livre, a pertinência também é elevada, refletindo sua distinção
genética em relação aos parasitas. Já no Cluster 5, algumas espécies exibem pertinências inter-
mediárias, sugerindo que podem compartilhar características genéticas com mais de um grupo.
Isso pode indicar transição evolutiva, variação genética interna ou a necessidade de refinamento na
definição desse cluster.

4 Conclusão
A abordagem híbrida (fuzzy c-means + clusterização hierárquica) mostrou-se promissora para

clusterização envolvendo espécies Kinetoplastea com sequências não alinhadas. A estratégia base-
ada em k-mers evitou alinhamentos complexos, identificando cinco clusters geneticamente distintos,
validados por alta correlação cophenética (0,96), FPC 0.6787 e especialistas. A análise da métrica
de inercia agregadas a clusterização, também contribuiu para a melhor escolha de distribuição das
espécies dentro dos clusters.

Sugere-se aplicar o método a outros gêneros, explorando diferentes técnicas para a construção da
matriz de distâncias, como cadeias de Markov e integral fuzzy. Além disso, recomenda-se incorporar
métricas adicionais para a validação dos clusters e aprimorar a visualização da distribuição das
espécies nos grupos.
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