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Abstract. Dengue fever poses a significant global health threat, with millions of infections annually.
This work introduces a preliminary mathematical model for studying dengue reinfections, aiming at
the Antibody-Dependent Enhancement phenomenon. We employ a vector-host modeling approach,
incorporating viral and antibody micro-dynamics to define new infections. In addition, we explore a
specific case that leads to a delayed model, analyzing its endemic equilibrium through theoretical and
numerical studies. The results confirm expected epidemiological behavior, supporting the model’s
applicability in dengue research.
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1 Introduction
Dengue fever is a viral infection transmitted from person to person through the Aedes aegypti

mosquito. Approximately half of the global population is now at risk of dengue, with an estimated
100 to 400 million infections occurring each year [6], which makes this disease a significant public
health concern in many regions of the world. In addition, there is no specific treatment for dengue or
severe dengue, highlighting the importance of studying mathematical models and control strategies
for this disease [1, 2].

Humans can experience symptomatic dengue virus (DENV) infections more than once due to
four antigenically distinct serotypes: DENV1, DENV2, DENV3, and DENV4 [5]. This diversity
complicates efforts to combat the disease. Furthermore, a secondary infection with a different
serotype significantly increases the risk of developing a severe disease. This phenomenon is known
as Antibody-Dependent Enhancement (ADE), where preexisting antibodies can facilitate the new
infection [3–5]. In this work, we propose a preliminary model to study dengue fever reinfections
and subsequently allow the study of the ADE phenomenon.

Different modeling approaches exist in dengue epidemiological studies, including host-to-host,
vector-host, and within-host models [1]. We present a vector-host model to represent the interaction
between the vector, virus, and host populations. The micro-dynamics are taken into account to
define new infections, which will be essential for the study of the ADE phenomenon. In this
work, microscopic dynamics, or within-host dynamics [3], consider the variation of viral load and
the antibody level (Ab). However, for an initial investigation, we consider the viral load and
antibodies of only a single dengue serotype.

Therefore, we present a general model and a particular case that leads to an associated delayed
model. In this particular case, we present the theoretical and numerical study of the endemic
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equilibrium. The numerical results also allow us to conclude that the model presents expected
behavior to the dynamics analyzed.

2 The Model
Let us suppose a constant population Nh and Nv of hosts and vectors, respectively. The host

population is divided into susceptible S(t), exposed E(t) (infected host population with the virus
at intrinsic incubation stage), infected I(t, z, y) (with some viral load z and antibody level y), and
recovered R(t, y). The vector population is divided only into the exposed vectors Ev(t) (infected
vector with the virus in the extrinsic incubation stage) and the infected vectors Iv(t). If necessary,
the susceptible vectors can be computed by Sv = Nv − Ev(t)− Iv(t).

The dynamics is described by

∂tI(t, z, y) + ∂z (a1I(t, z, y)z − a2I(t, z, y)y) + ∂y (−a3I(t, z, y)y + a4I(t, z, y)z) = 0, (1a)

∂tR(t, y) + ∂y (−a5R(t, y)) = −I(t, z0, y)
(
a1z0 − a2y

)
, (1b)

Ṡ(t) = −bIv(t)
S(t)

Nh
+ a5R(t, y0), (1c)

Ė(t) = bIv(t)
S(t)

Nh
− 1

τh
E(t), (1d)

Ėv(t) =

(∫ ∞

0

∫ ∞

z0

I(t, z, y)

Nh
γ(z)dzdy

)
(Nv − Ev(t)− Iv(t))−

1

τv
Ev(t)− µvEv(t), (1e)

İv(t) =
1

τv
Ev(t)− µvIv(t), (1f)

where t, z, y ∈ [0,+∞), I : [0,+∞)× [z0,+∞)× [0,+∞) → [0, Nh] and R : [0,+∞)× [y0,+∞) →
[0, Nh]. The descriptions of the parameters are given in Table 1, where [·] denotes the desired unit
of measurement for viral load [z] and Ab level [y].

Table 1: Description of the parameters.
Parameter Description Unit

a1 Virus growth rate in the host day−1

a2 Viral load decay rate [z]/([y]day)−1

a3 Ab titer decay rate on Infected host day−1

a4 Ab titer production rate in the presence of virus [y]([z]day)−1

a5 Ab titer decay rate on Recovered host [y]day−1

b Vector to host transmission rate day−1

z0 Minimum detectable viral load [z]
y0 Minimum Ab level associated to z0 [y]
γ(z) Host to vector transmission rate ([z][y]day)−1

τh Intrinsic incubation period day
τv Extrinsic incubation period day
µv Vector death rate day−1

In our equations, we assume that the vectors die, but their population is rapidly replenished,
considering that the populations remain constant.

The boundary conditions for the PDE of this model are zero, except for

I(t, z = z0, y ∈ [0, y0]) =
1

(a1z0 − a2y⋆)τh
E(t)g(y), (2)
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where g(y) is a distribution function with center of mass y⋆ ∈ [0, y0]. The boundary condition (2)
represents the exposed part of the population, which has a significant viral load and antibodies to
enter the dynamics of infected population I, according to the distribution g(y).

The transport terms in (1) determine what is the exact microscopic temporal dynamics of the
viral load vs. the antibody level. They were chosen to be the simplest possible, while still describing
the desired dynamics [5], which in our case takes the explicit form of the characteristic equations
(3). However, more detailed behaviors could be modeled, by adapting the transport terms (and
thus, the characteristic’s trajectories) accordingly. Still, it is challenging to conduct a more detailed
study on the temporal variation of antibody levels with respect to viral load, since such detailed
descriptions are not yet available in the literature.

Given the complexity of the model (1) for theoretical analysis, let us assume that our entire
population has the same characteristics, that is, that our distribution function g(y) is a Dirac delta
δ(y − y⋆). Therefore, we can build an associated delay model for a particular study.

2.1 Associated Delay Model

From the model (1), we know that after the incubation period, some individuals enter the
compartment I with a viral load z0 and some Ab level, as described by the boundary condition
(2). Let us say that all individuals leaving compartment E and entering compartment I are
concentrated at a single point (t, z0, y

⋆). Thus, the I’s compartment dynamics is described by a
single characteristic curve of equation (1a), starting from (t, z0, y

⋆). According to the dynamics of
system (1), this characteristic curve remains in the set (z, y) ∈ [z0,+∞)× [0,+∞) for a period τ1.
After this time, the characteristic reaches a point (t+ τ1, z0, y

+). By the characteristic equations
of (1a), we know that τ1 and y+ are computed by the smaller value of ξ > 0 such that

z0 = e
a1−a3

2 ξ
(
z0 cosβξ +

(
z0

a1 + a3
2β

− y⋆a2
β

)
sinβξ

)
,

y+ = e
a1−a3

2 ξ
(
y⋆ cosβξ +

(a4z0
β

− y⋆
a1 + a3

2β

)
sinβξ

)
,

(3)

for given z0 and y⋆, where β = 1
2

√
4a2a4 − (a1 + a3)2. Numerically, we can compute the variables

τ1 and y+ by Newton’s method.
Then, the number of individuals that enter the new compartment R at position (t+ τ1, z0, y

+)
can be written as:

I(t+ τ1, z0, y
+) =

1

(a1z0 − a2y⋆)τh
E(t)g(y). (4)

As before, we can consider that the information travels from position (t + τ1, z0, y
+) along

compartment R, until it reaches compartment S(t). Let τ2 be the period in which the individuals
remain in compartment R. Then, τ2 is defined from the characteristic equation of (1b), by:

τ2 =
y+ − y0

a5
. (5)

The number of individuals who leave the compartment R at time t + τ1 + τ2 and enter the
compartment S is

R(t+ τ1 + τ2, y0) =
1

a5τh
E(t), (6)

for a given time t.
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Finally, we consider the host to vector transmission rate γ as constant and write the associated
delay model (respecting mass conservation):

Ṡ(t) = −bIv(t)
S(t)

Nh
+

1

a5τh
E(t− τ1 − τ2), (7a)

Ė(t) = bIv(t)
S(t)

Nh
− 1

a5τh
E(t), (7b)

Ėv(t) =
γ

Nh

(
Nh − S(t)− E(t)− 1

a5τh

∫ y+

y0

E
(
t− τ1 −

y+ − y

a5

)
dy

)
(Nv − Ev(t)− Iv(t))

− 1

τv
Ev(t)− µvEv(t), (7c)

İv(t) =
1

τv
Ev(t)− µvIv(t). (7d)

3 Endemic Equilibrium

Let a point of the system (7) be denoted by (S,E,Ev, Iv), we will study the endemic equilibrium
(s∗, e∗, e∗v, i

∗
v) of this associated delay model.

In order to analyze system (7), let s = S/Nh, e = E/Nh, ev = Ev/Nv, iv = Iv/Nv, and
m = Nv/Nh. So, the system (7) can be reduced to the following equations:

ṡ(t) = −bm iv(t)s(t) +
1

a5τh
e(t− τ1 − τ2), (8a)

ė(t) = bm iv(t)s(t)−
1

a5τh
e(t) (8b)

ėv(t) = γ
(
1− s(t)− e(t)− 1

a5τh

∫ y+

y0

e
(
t− τ1 −

y+ − y

a5

)
dy

)
(1− ev(t)− iv(t))

− 1

τv
ev(t)− µvev(t), (8c)

i̇v(t) =
1

τv
ev(t)− µviv(t). (8d)

Solving (8) in its steady state, we have the following solution:

s∗ =
i∗v(γ + µv)(µvτv + 1)− γ

γ[i∗v
2a5bm(µvτv + 1)(τ2 + τh) + i∗v(−a5bm(τ2 + τh) + µvτv + 1)− 1]

, (9a)

e∗ =
a5τhbmi∗v[i

∗
v(γ + µv)(µvτv + 1)− γ]

γ[i∗v
2a5bm(µvτv + 1)(τ2 + τh) + i∗v(−a5bm(τ2 + τh) + µvτv + 1)− 1]

, (9b)

e∗v = µvτvi
∗
v. (9c)

for an arbitrary i∗v.
As we want a positive endemic equilibrium, we conclude that the possible solutions of the

system (9), are given by:

i∗v ∈
(
0,

γ

(γ + µv)(µvτv + 1)

)
.

For simplicity, we denote only the solution concerning the admissible set of iv.
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4 Numerical Studies

In our numerical study, we consider the model (8), which has the disease-free equilibrium point
DFE = (1, 0, 0, 0). We assume our initial condition as a small perturbation on DFE, that is,
(1, 0, 0.001, 0). We fix the following parameters: a1 = 0.9, a2 = 0.4, a3 = 0.0001, a4 = 0.9,
a5 = 0.05, γ = 0.1, τv = 10, µv = 0.025, z0 = 1, and we take b ∈ {0.005; 0.05} and we vary
m. We compute the delay values τ1 and τ2 present in (8) only once. The first delay value τ1 is
calculated from (3) by Newton’s method, with initial shooting ξ0 = 2.5. The second delay value
τ2 is explicitly given by (5).

The derivatives on (8) are approximated by the explicit Euler method (which is sufficient for
our present purposes), and the integral term is approximated by the generalized left rectangle rule.
The final time evaluated is set as Tf = 1000, the time step is ∆t = 0.1, and the number of discrete
points for each variable is NT = Tf/∆t. To compute the normalized recovered host population r,
we consider the integral of equation (6) over the interval [tn+τ1, t

n+τ1+τ2], for each tn = n∆t, with
n = 0, . . . , NT . This integral is also approximated by the generalized left rectangle rule. Finally, to
represent the normalized infected host population i, we assume a constant normalized total host
population, that is, i(tn)+r(tn)+s(tn)+e(tn) = 1 for n = 0, . . . , NT , then we isolate the term i(tn).
In the same way, we compute the susceptible vector population from sv(t

n)+ iv(t
n)+ ev(t

n) = 1.

It was possible to observe a stable and constant numerical solution in relation to the DFE point
(for sufficiently large t), as shown in Fig. 1 for m = 0.3. The higher the value of m (up to 0.5), the
longer it takes t to achieve DFE.
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(a) Host dynamics for e, i and r.
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(b) Vector dynamics for ev and iv .

Figure 1: Dynamics of compartments exposed (e, ev), infected (i, iv) and recovered (r), with m = 0.3.
Source: produced by the author.

From values of m > 0.5 we have a growing number of infections. That is, as we increase the
proportion of mosquitoes to humans, the model leads to a significant increase in infections, even
though the parameters b and γ are small.

The Fig. 2 shows the dynamics for host and vector populations, respectively, assuming m = 5.0.
We observe that the numerical solution seems to stabilize at one of the endemic equilibria.
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(a) Host dynamics.
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(b) Vector dynamics.

Figure 2: Dynamics for system (8), with m = 5.0. Source: produced by the author.

Keeping the vector-to-host ratio m = 5.0, we modify the b infection rate to try to visualize
the oscillations associated with new infections. The Fig. 3 allows us to observe the increase in the
infected hosts, in which almost the entire population becomes infected. Even though it is not a real
case, we can visualize the expected dynamics and we can notice a tendency towards an equilibrium.
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(a) Host dynamics.
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(b) Vector dynamics.

Figure 3: Dynamics for system (8), m = 5.0 and b = 0.05. Source: produced by the author.

5 Conclusion

In this work, we have considered a model which integrates microscopic dynamics (in the form of
the joint evolution of the viral load and the antibody levels, given in (1) and described by (3)) with
the more traditional macroscopic compartments appearing in (1) and (7). Macroscopic properties
are influenced by the detailed dynamics between viral load and antibody level. In this work,
we have only considered a simple form for the microscopic dynamics. It remains to be explored
how different micro dynamics would alter or influence the macroscopic outcomes – which would
represent a fuller integration of the micro and macro aspects.

We can observe that the numerical results are in line with the theoretical results presented
for the study of the endemic equilibrium of the proposed model. Furthermore, at the qualitative
level, the model is consistent with the real behavior of dengue infections, which will allow us to
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study questions such as the existence of a basic reproduction number R0, and the stability of the
equilibria in the future.

In future work, we intend to further investigate the proposed micro-macro interactions, as well
as to extend the model to more than one serotype (and their corresponding antibodies), with the
objective to study the ADE phenomenon.
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