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Crescimento Logístico Modelado por ANFIS
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Resumo. Este estudo investiga as capacidades do Adaptative-Network-Based Fuzzy Inference Sys-
tem (ANFIS), uma ferramenta que combina redes neurais e lógica fuzzy para ajustar um modelo
de crescimento populacional logístico de Verhulst. Assim, neste trabalho são utilizados dados sin-
téticos para fornecer um ajuste de curva do crescimento logístico populacional e do parâmetro de
taxa de crescimento. Por meio dos gráficos produzidos são apresentadas interpretações biológicas
dos antecedentes, dados por conjuntos fuzzy Gaussianos, e dos consequentes, dados por funções
lineares obtidas pela inferência de Takagi-Sugeno, gerados pelo ANFIS. Por fim, é apresentada uma
extensão do modelo logístico para visualizar uma superfície representativa da taxa de crescimento
e sua aproximação mediante o ANFIS.
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1 Introdução
O crescimento de Verhulst, também conhecido como modelo logístico, desempenha um papel

importante na biomatemática, ao descrever diversos fenômenos, como a dinâmica populacional.
Neste modelo são consideradas informações como capacidade suporte do meio, que vão além dos
pressupostos propostos pelo modelo de Malthus [5]. No entanto, os modelos clássicos propostos
não contemplam incertezas que podem estar atreladas a esta dinâmica. Nesse sentido, a teoria
de conjuntos fuzzy pode auxiliar tanto na modelagem, quanto na interpretação e controle de
crescimento de uma determinada população [16, 18].

O método baseado em um Sistema Adaptativo de Inferência Neuro-Fuzzy, em inglês Adaptive
Neuro-Fuzzy Inference System (ANFIS), foi criado na década de 1990 por Jang [11, 12] e tem como
principais características a integração de redes neurais com lógica fuzzy, permitindo aprendizado
adaptativo e a construção de sistemas de inferência fuzzy [4, 10]. Muitas aplicações têm sido
desenvolvidas com o uso do ANFIS nas áreas como educação [9], saúde [14] e engenharia [6, 15].

As abordagens para o uso do ANFIS são das mais diversas, a partir dessa abordagem é pos-
sível realizar ajuste de parâmetros e curvas, classificação e reconhecimento de padrões, previsão
e controle [1, 7, 13, 17]. Este trabalho se dedica a primeira direção, isto é, o método ANFIS é
direcionado para ajustar as regras fuzzy associadas aos dados e otimizar os parâmetros das funções
de pertinência para minimizar o erro entre a saída do sistema e a saída real. Para isso, são utili-
zados o método de descida do gradiente e o método de treinamento retropropagação (em inglês,

1danielsanchez@uach.cl
2laeciocb@ime.unicamp.br
3eelaureano@ime.unicamp.br
4vinicius.wasques@ilum.cnpem.br - FAPESP nº 2023/03927-0

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, v. 12, n. 1, 2026.

Trabalho apresentado no XLIV CNMAC, Fundação Getulio Vargas - Rio de Janeiro - RJ, 2025.

DOI: 10.5540/03.2026.012.01.0268 010268-1 © 2026 SBMAC

http://dx.doi.org/10.5540/03.2026.012.01.0268


2

backpropagation). A Figura 1 ilustra como o método ANFIS é utilizado, isto é, as variáveis x1 e x2

representam as entradas, ŷ a previsão do modelo e y o valor observado nos dados. Os conjuntos
fuzzy são representados por φi, as regras do sistema por Ri e a função de perda por L, sendo que
a retropropagação é utilizada para ajustar os parâmetros a partir da função de perda.

Figura 1: Diagrama de um sistema ANFIS com duas entradas e quatro regras fuzzy. Fonte: Elaboração
própria

Com isso, vamos unir conceitos de biomatemática com o ANFIS, para poder gerar conjuntos
fuzzy para os antecedentes e consequentes de um Sistema Baseado em Regras Fuzzy (SBRF), a fim
de propor uma modelagem baseada em um conjunto de dados para um determinado problema [3].

2 Preliminares

2.1 Crescimento Populacional Logístico

O crescimento logístico, também conhecido como modelo de Verhulst, é descrito pela seguinte
equação diferencial [5, 8]:

dP

dt
= rP

(
1− P

K

)
, (1)

em que P (t) representa a população no instante t, r é a taxa de crescimento intrínseco, e K é a
capacidade de suporte do ambiente. A solução analítica desta equação diferencial é dada por:

P (t) =
K

1 +
(

K−P0

P0

)
e−rt

, (2)

sendo P (0) a população inicial no tempo t = 0. Esta solução mostra como a população cresce
inicialmente de forma exponencial, desacelerando gradativamente até atingir o limite K, refletindo
fenômenos reais em ecossistemas biológicos [5, 8].
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2.2 Sistemas de Inferência Fuzzy e ANFIS
Os números fuzzy Gaussianos são conjuntos fuzzy caracterizados por uma função de pertinência

em forma de sino [2, 4]:

µ(x) = e−
(x−c)2

2σ2 , (3)

em que c é o centro e σ define a largura do conjunto fuzzy. Embora existam outros conhecidos tipos
de conjuntos fuzzy (triangulares ou trapezoidais), estes números fuzzy Gaussianos são amplamente
utilizados devido à sua suavidade e à capacidade de modelar incertezas de forma contínua.

O método de inferência de Takagi-Sugeno é uma abordagem de sistemas fuzzy baseada em
regras do tipo:

Se x é A e y é B então z = f(x, y),

em que f(x, y) é geralmente dada por uma função linear ou constante, ideal para aplicações práticas
que exigem simplicidade e eficiência computacional [2, 4].

O ANFIS é uma técnica criada por Jang na década de 1990, que combina as capacidades de
redes neurais artificiais com lógica fuzzy, permitindo a criação de sistemas de inferência fuzzy tipo
Takagi-Sugeno [11, 12]. Ele utiliza cinco camadas principais: Uma primeira camada de entrada
(Fuzzificação), que converte os valores reais de entrada em valores fuzzy, aplicando funções de
pertinência (como as gaussianas). Uma segunda camada de regras, a qual combina os conjuntos
fuzzy de entrada para formar as regras fuzzy, utilizando operadores lógicos como o produto ou
o mínimo. Uma terceira camada de Normalização a qual normaliza os pesos das regras. Uma
quarta camada de consequente, a qual calcula a saída ponderada de cada regra, usando a função
consequente (linear ou constante) definida no método de Takagi-Sugeno. Finalmente, uma quinta
camada de saída (Defuzzificação) onde são estabelecidos os resultados ponderados das regras para
produzir a saída final do sistema [4, 10].

O ANFIS pode ser treinado com dados de entrada-saída para ajustar automaticamente os pa-
râmetros de construção das funções de pertinência e os coeficientes das funções nos consequentes.
Para isso, utiliza métodos de otimização como “Descida do Gradiente”, o qual ajusta os parâmetros
para minimizar o erro entre as saídas do sistema e os dados reais, ou o método de “Quadrados Mí-
nimos”, para determinar os parâmetros dos consequentes otimizando diretamente o erro quadrático
médio [4, 10].

Assim, com essas camadas e métodos de treinamento, o ANFIS é capaz de gerar um sistema
de inferência fuzzy robusto e eficiente, adequado para modelar sistemas complexos com incertezas
ou variabilidade nos dados.

3 Modelagem proposta para o Crescimento Logístico com
ANFIS

A utilização de dados para este estudo foi realizada de forma simulada, baseada na solução
analítica da equação logística, dada em (2). Assim, são extraídos alguns dados sintéticos que
geram uma curva de crescimento logístico. Esses dados foram utilizados para treinar o modelo
ANFIS. Nos exemplos a seguir, foram considerados 10 dados e os parâmetros K = 50, r = 0, 85 e
P0 = 1 para representar a solução da equação logística.

Para o treinamento do ANFIS, foi necessária inicialmente a geração de um sistema fuzzy,
utilizado como base. Este sistema foi criado por meio de um método de particionamento por grade
regular, no qual os dados temporais (variável de entrada) foram divididos em intervalos regulares
ao longo do tempo. Esse processo assegura que os conjuntos fuzzy iniciais cubram uniformemente o
espaço de entrada, fornecendo uma base adequada para o treinamento. Posteriormente, foi aplicado
o método de validação cruzada para determinar o número ótimo de funções de pertinência (MFs).
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Esse método consiste em dividir os dados em conjuntos de treinamento e validação, avaliando o
desempenho do modelo para evitar sobreposição do ajuste. Um exemplo da realização desse teste é
apresentado na Figura 2a. Em seguida, foi realizada a busca pelo número mais adequado de épocas
de treinamento com base na estabilização da curva de erro de treinamento, dada na Figura 2b. A
partir dessa simulação, foram escolhidas 3 funções de pertinência e 258 épocas.
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Figura 2: a) Optimização do número de funções de pertinência e b) Optimização do número de épocas
para o modelo do crescimento logístico com uma variável de entrada. Fonte: Elaboração própria.

Com o número de funções de pertinência e de épocas definido, o modelo ANFIS pode ser
treinado. Assim, como resultado do treinamento, o ANFIS estabelece uma previsão da curva de
crescimento logístico, segundo os dados de treinamento, a partir de um sistema de inferência fuzzy
gerado. Os resultados obtidos nessa predição do ANFIS demonstraram um desempenho satisfatório
para modelar a curva de crescimento logístico, sendo apresentados nas Figuras 3a e 3b.
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Figura 3: a) Solução analítica do crescimento Logístico (em azul) e pontos (em vermelho) para treinar o
ANFIS, e b) Curva de modelagem para o crescimento Logístico estabelecida pela predição do ANFIS (em

verde), segundo os dados de treinamento (em vermelho). Fonte: Elaboração própria.

Os antecedentes gerados pelo ANFIS, que foram estabelecidos a partir do número de épocas es-
colhido, e consequentes definidos por funções lineares estabelecidas pelo método de Takagi-Sugeno,
são apresentados nas Figuras 4a e 4b.
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Figura 4: a) Funções de pertinência Gaussianas estabelecidas como antecedentes e b) Funções lineares,
segundo o método de Takagi-Sugeno, estabelecidas como consequentes do sistema de inferência fuzzy

gerado pelo ANFIS. Fonte: Elaboração própria.

Segundo a teoria de conjuntos fuzzy, as funções de pertinência dos antecedentes (em Figura
4a), podem ser estabelecidas como termos linguísticos da variável de entrada (tempo) e podem ser
interpretadas, segundo o modelo biomatemático do crescimento logístico, como:

• “Tempo Inicial”: Representa o intervalo de valores de tempo próximos ao início do crescimento
logístico (aqui a população é baixa e o crescimento é lento).

• “Tempo Médio”: Representa o intervalo de valores de tempo próximos ao ponto de inflexão
da curva logística (aqui a população está em um ponto de crescimento acelerado e é o período
de maior mudança relativa na população).

• “Tempo Tardio”: Representa o intervalo de valores de tempo próximos ao fim do crescimento
logístico (aqui a população se aproxima para um limite superior, ou capacidade de suporte,
onde o crescimento é mais lento ou nulo).

Adicionalmente, as funções lineares dos consequentes (Figura 4b), que são estabelecidas segundo
o método de Takagi-Sugeno e geradas pelo ANFIS, podem ser interpretadas como aproximações
pontuais da função de saída. Portanto, as inclinações dessas funções lineares podem ser interpre-
tadas como aproximação das taxas de crescimento da população num modelo logístico. Com isso,
é possível verificar que a inclinação estabelecida no método de Takagi-Sugeno, pela segunda regra
fuzzy (em reta y2 na Figura 4b), relacionada com a segunda função de pertinência (“tempo médio”)
se associa com uma inclinação positiva e maior que as outras duas funções lineares, correlacionando
o maior crescimento da população nesses períodos próximos ao ponto de inflexão da curva.

4 Modelagem proposta para a Taxa de Crescimento Logístico
Nesta seção, propomos simular uma extensão do modelo logístico clássico para uma superfície

logística cujas variáveis de entrada sejam os recursos disponíveis e a população existente. Para isso,
utilizamos a incorporação do termo R

Rmax
, em que R representa os recursos disponíveis e Rmax os

recursos máximos disponíveis. Esta abordagem foca no ajuste da taxa de crescimento logístico em
função da disponibilidade de recursos, proporcionando uma representação do comportamento do

sistema. Assim, ao invés de considerar r na Equação (1), é utilizado r(R) = r
R

Rmax
. Neste caso o
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ANFIS, a partir do método de descida do gradiente e retropopagação, busca otimizar o parâmetro
r(R), a partir do conjunto de dados fornecido (veja Figura 1). Aqui foram utilizadas 3 funções
de pertinência e 17 épocas. Os resultados obtidos nessa predição do ANFIS demonstraram um
desempenho satisfatório da superfície gerada, sendo apresentada na Figura 5.

Figura 5: Superfície representativa da Taxa de crescimento Logístico combinada com a superfície de
predição gerada pelo ANFIS. Fonte: Elaboração própria.

5 Considerações Finais
O estudo demonstrou que o Sistema Adaptativo de Inferência Neuro-Fuzzy (ANFIS) é uma fer-

ramenta eficaz para modelar o crescimento logístico populacional, conseguindo prever com precisão
a curva de crescimento a partir de dados de treinamento. As funções de pertinência geradas para
o modelo clássico, permitiram uma interpretação linguística significativa das fases do crescimento
populacional como “Tempo Inicial”, “Tempo Médio” e “Tempo Tardio”. Além disso, a análise das
inclinações das funções lineares dos consequentes (pelo método de Takagi-Sugeno) revelou correla-
ções importantes com os princípios biomatemáticos de Verhulst, especialmente na identificação do
período de maior crescimento populacional.

Adicionalmente, foi proposta uma extensão do modelo logístico clássico para incorporar a dis-
ponibilidade de recursos como variável adicional, o qual permitiu gerar uma superfície para in-
terpretar a taxa de crescimento. Estes resultados confirmam que a integração de redes neurais
artificiais com lógica fuzzy podem proporcionar uma abordagem robusta e adaptável para modelar
fenômenos biomatemáticos simples e, potencialmente para trabalhos futuros complexos.
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