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Resumo. Neste trabalho, propomos um modelo matemático para analisar o impacto da tempe-
ratura e da infecção por uma cepa de Wolbachia na dinâmica populacional de Aedes aegypti. O
modelo consiste em um sistema de equações diferenciais com retardo, incorporando a dependência
dos parâmetros em relação à temperatura, o que o torna não autônomo. As simulações numéricas
indicam que a liberação de mosquitos infectados é mais eficaz quando realizada em múltiplas etapas
dentro de um determinado período e sob temperaturas amenas, uma vez que temperaturas elevadas
prejudicam a sobrevivência dos mosquitos.
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1 Introdução

A liberação de mosquitos Aedes aegypti infectados com a bactéria Wolbachia tem se consolidado
como uma abordagem inovadora para o controle de arboviroses, e tem por objetivo substituir ou
reduzir a população de mosquitos não infectados. A infecção Wolbachia impede (ou diminui) a
replicação dos vírus no hospedeiro mosquito, interrompendo (ou diminuindo) assim a transmissão
de patógenos. O sucesso dessa abordagem depende da cepa da bactéria (wMel, wMelPop, wAlbB,
entre outras) utilizada e da proporção de machos e fêmeas infectados liberados. Duas caracte-
rísticas da infecção conferem vantagem aos indivíduos infectados, são elas a incompatibilidade
citoplasmática (IC) e a herança materna.

Existem diversos programas de liberação de Wolbachia, entre eles citamos o World Mosquito
Program (WMP), a National Environment Agency (NEA) e o Institute For Medical Research. No
Brasil, o WMP iniciou as primeiras liberações de mosquitos no Rio de Janeiro, com o apoio do
governo e da comunidade local [5].

Vários modelos matemáticos foram desenvolvidos para investigar a introdução da bactéria Wol-
bachia na população de Aedes aegypti, contudo, poucos abordam o impacto de fatores abióticos
sobre a eficácia da técnica. Exceções incluem os estudos de Benedito et al. [2] e Ferreira [3] que o
fazem mas sem considerar explicitamente a dependência da temperatura nos parâmetros do mos-
quito e da infecção. Considerando que a temperatura pode influenciar tanto a aptidão do mosquito
quanto a perda da bactéria, é fundamental investigar seu efeito na prevalência da Wolbachia em
cenários nos quais mosquitos infectados competem com os não infectados.
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O objetivo deste trabalho, publicado em [4], é analisar como a temperatura e a infecção pela
bactéria Wolbachia afetam a dinâmica populacional de Aedes aegypti. Para isso, desenvolvemos
um modelo estruturado por estágio (imaturo e adulto), representando uma população de Aedes
aegypti infectada com Wolbachia, levando em consideração tanto a IC quanto a herança materna,
parâmetros característicos da infecção. Essa população é introduzida em um ambiente habitado
por uma população de mosquitos selvagens (estruturada por estágio de mosquitos não infectados).
O modelo, composto por equações diferenciais com retardo e não autônomas, considera que os
parâmetros relacionados ao ciclo de vida do mosquito e à infecção são funções da temperatura.

2 Modelo Matemático
A população de mosquitos é composta por indivíduos infectados (Nw) e não infectados (Nu)

pela bactéria Wolbachia. Os parâmetros associados ao ciclo de vida dos mosquitos e à infecção por
Wolbachia variam em função da temperatura (T ). A Tabela 1 apresenta a lista completa desses
parâmetros. Baseado em [1–3], o modelo considera tanto as fases imatura quanto adulta do ciclo
de vida do inseto, assim como a IC, q ∈ (0, 1], e a herança materna, ξ ∈ (0, 1]. Assim, o modelo é
descrito por um sistema de equações diferenciais com retardo, dado por:

dNu

dt
= ru(1− qν(t− τ(t)))bu(T (t− τ(t)))Nu(t− τ(t))Su(t)ϕ(T (t− τ(t)))

+(1− ξσ(t))rwbw(T (t− τ(t)))Nw(t− τ(t))Sw(t)ϕ(T (t− τ(t)))

−du(T (t))Nu(t) + θ(T (t))Nw(t), (1)
dNw

dt
= rwξσ(t)bw(T (t− τ(t)))Nw(t− τ(t))Sw(t)ϕ(T (t− τ(t)))

−(θ(T (t)) + dw(T (t)))Nw(t),

onde
ϕ(T (t− τ(t))) = e−qb(T (t−τ(t)))(ruNu(t−τ(t))+rwNw(t−τ(t)))

representa a competição entre mosquitos fêmeas por locais de oviposição, e

ν(t− τ(t)) =
(1− rw)Nw(t− τ(t))

ϵ(1− ru)Nu(t− τ(t)) + (1− rw)Nw(t− τ(t))
.

calcula a probabilidade de um macho infectado acasalar com uma fêmea não infectada.
Além disso, Su e Sw representam, respectivamente, a probabilidade de sobrevivência dos indi-

víduos não infectados e infectados, enquanto τ corresponde ao tempo de desenvolvimento e σ à
probabilidade de sobrevivência da infecção (do ovo à fase adulta). Esses parâmetros dependem do
tempo, sendo que a razão m(T (t))/m(T (t− τ(t))) descreve o impacto da temperatura T (t) sobre
o desenvolvimento dos insetos a cada instante t.

Os parâmetros mencionados são descritos pelas seguintes expressões:

dSu(t)

dt
= Su(t)

[
m(T (t))duJ(T (t− τ(t)))

m(T (t− τ(t)))
− duJ(T (t))

]
,

dSw(t)

dt
= Sw(t)

[
m(T (t))dwJ(T (t− τ(t)))

m(T (t− τ(t)))
− dwJ(T (t))

]
,

dσ(t)

dt
= σ(t)

[
m(T (t))θJ(T (t− τ(t)))

m(T (t− τ(t)))
− θJ(T (t))

]
,

dτ(t)

dt
= 1− m(T (t))

m(T (t− τ(t)))
.
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Tabela 1: Parâmetros do modelo, sua descrição e unidades.

Notação Descrição Unidade
ξ herança materna da infecção -
τ tempo de desenvolvimento dia
q probabilidade de ocorrência de IC -
qb capacidade de suporte da população indivíduos−1

m taxa de desenvolvimento dia−1

ru, rw razão sexual da população não infectada e infectada -
bu, bw taxa de nascimento da população não infectada e infectada dia−1

θ, θJ taxa de perda de infecção por Wolbachia em adultos e larvas dia−1

du, dw taxa de mortalidade da população não infectada e infectada dia−1

duJ , dwJ taxa de mortalidade da população imatura não infectada dia−1

e infectada
ϵ vantagem na capacidade competitiva de acasalamento -

Se assumirmos que: (i) T := T (t) = T (t − τ(t)), ou seja, a temperatura é constante; (ii)
ν := ν(t− τ(t)), isto é, a probabilidade de acasalamento do mosquito infectado é constante; e (iii)
r := ru = rw, ou seja, a razão sexual das populações é igual e constante, então recuperamos o
cenário estudado em [2, 3].

3 Resultados
Para analisar a evolução temporal das populações de mosquitos infectados e não infectados

em ambientes com variações térmicas, propomos funções matemáticas (ver seção 3.1 em [4]) que
descrevem a dependência dos parâmetros entomológicos e da dinâmica da infecção em relação à
temperatura, como ilustrado na Figura 1.

3.1 Estratégia de Liberação de Mosquitos

A Figura 2 ilustra a variação temporal da temperatura e a dinâmica da população de mosquitos
não infectados sob essas flutuações, mostrando ambas as curvas com oscilações periódicas. A
temperatura exibe um período de oscilação de 365 dias, enquanto a periodicidade na população
de mosquitos resulta da interação entre diversos fatores que influenciam sua dinâmica. A figura
permite identificar períodos favoráveis (F) e desfavoráveis (U) para a população de mosquitos,
nos quais ela atinge níveis elevados ou reduzidos, respectivamente. Essas observações motivam a
análise do momento ideal do ano para a liberação de mosquitos infectados, a fim de maximizar a
prevalência de Wolbachia, além de avaliar a eficácia de estratégias, como as introduções únicas ou
múltiplas de mosquitos infectados por Wolbachia.

Para calcular a eficácia da técnica de liberação de mosquitos infectados por Wolbachia para
suprimir ou diminuir a população selvagem, definimos

Ek = 1− Ic
I0

com Ij =

∫ tf

ti

Nu(t) dt,

onde Ij , com j ∈ {0, c}, representa o número acumulado de mosquitos não infectados observados
entre ti e tf . Em particular, Ic considera o número de mosquitos não infectados que persistem
após a liberação de mosquitos infectados, enquanto I0 corresponde ao número de mosquitos não
infectados em um cenário sem liberação. Assim, Ek quantifica a redução da população selvagem
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Figura 1: Efeito da temperatura nos parâmetros do modelo. Em vermelho, os mosquitos não
infectados, e em azul, os infectados. As linhas tracejadas representam a fase imatura, enquanto as
linhas contínuas correspondem à fase adulta. Os dados extraídos da literatura são representados
por pontos vermelhos, com as curvas ajustadas aos dados. Fonte: Lopes et al. [4].

devido à introdução de mosquitos invasores (infectados com uma cepa de Wolbachia). Os índices
k distinguem os diferentes cenários. Além disso, a prevalência da infecção é medida como

P =
Nw

Nw +Nu
.

A Figura 3 apresenta, para os quatro cenários, a relação entre a proporção de mosquitos in-
fectados e não infectados no momento da soltura e a eficácia da técnica. Para a estratégia de
liberação única e para atingir 50% de eficácia, o número de mosquitos infectados liberados deve ser
pelo menos cinco vezes o número de não infectados, caso a liberação ocorra durante o período do
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Figura 2: À esquerda, a evolução temporal da temperatura com 25±3◦C. À direita, a dinâmica da
população de mosquitos não infectados sob a influência da temperatura. As duas linhas tracejadas
verticais destacam os períodos favoráveis (F) e desfavoráveis (U) para a liberação de mosquitos
infectados. Fonte: Lopes et al. [4].

ano em que a população é menor. Por outro lado, se a liberação for realizada durante o período em
que a população é maior, o número de mosquitos infectados liberados deve ser pelo menos quatro
vezes o número de não infectados.

No caso de quatro liberações, se a liberação ocorrer durante o período desfavorável, o número de
mosquitos infectados liberados deve ser quatro vezes o número de não infectados para atingir 50%
de eficácia; e, se for feita durante o período favorável, esse número deve ser duas vezes o número de
não infectados. Para uma e quatro liberações, observa-se um valor significativo de eficácia quando
Nw/Nu(ts) é menor que um, e a prevalência média de infecção medida nos últimos 30 dias (veja
as linhas tracejadas) é praticamente zero. Em ambos os casos, verifica-se um valor assintótico de
60% para a prevalência, alcançado antes da realização das quatro liberações.

Em geral, temperaturas extremas - baixas ou altas - provocam uma redução nas populações de
mosquitos, enquanto temperaturas intermediárias favorecem o aumento populacional. Resultados
numéricos indicam que temperaturas elevadas afetam a aptidão dos mosquitos infectados mais do
que o dos não infectados. Além disso, o aumento da temperatura também eleva a taxa de perda
de infecção (ver seções 3.2.1 e 3.2.2 em [4]).

4 Conclusão
Verificamos que a realização de quatro liberações em intervalos de 7 dias é mais eficaz do

que uma única liberação. O momento ideal para implementar a soltura ocorre durante períodos
favoráveis, quando a população de mosquitos está elevada. No entanto, é crucial destacar que altas
temperaturas podem comprometer a eficácia da técnica, aumentando a proporção de mosquitos
não infectados e reduzindo a prevalência da infecção na população a longo prazo.
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(a) Uma liberação de mosquitos infectados
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(b) Quatro liberações de mosquitos infectados

Figura 3: Liberações de mosquitos infectados. As quatro curvas, em cada figura, foram obtidas
variando a proporção de populações infectadas em relação às populações selvagens no momento
da primeira liberação de mosquitos infectados por Wolbachia (ts). Uma e quatro liberações de
mosquitos infectados foram realizadas durante períodos favoráveis e desfavoráveis. As linhas con-
tínuas mostram a redução em Nu, e as linhas tracejadas, a prevalência da infecção. Fonte: Lopes
et al. [4].
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