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Resumo. Este artigo tem como objetivo explorar e comparar diferentes algoritmos de interpo-
lação que podem substituir o método de Lagrange no contexto do esquema criptográfico Shamir
Secret Sharing. Serão analisados métodos alternativos de interpolação, comparando seu desempe-
nho computacional. Além disso, será avaliado o tempo de execução em função do número de shares,
variável que influencia diretamente a eficiência do sistema, especialmente em aplicações reais, como
autenticação multifator e preservação da privacidade em dados de redes elétricas.
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1 Introdução

A segurança da informação é um dos pilares fundamentais na sociedade digital contemporânea,
especialmente em cenários que exigem o armazenamento e a proteção de dados sensíveis. Conforme
[3], é de suma importância a prevenção de ataques tanto de terceiros quanto internos.

Com isso, métodos criptográficos estão cada vez mais presentes. Com o Shamir Secret Sharing
é possível garantir a privacidade e a integridade desses dados, pois, além de armazená-los, também
podemos realizar cálculos matemáticos em seus valores cifrados, como demonstrado em [4].

Assim, neste artigo, o objetivo é explorar e comparar diferentes algoritmos de interpolação que
podem substituir o método de Lagrange no contexto do Shamir Secret Sharing. Serão analisados
e comparados os métodos de Newton e Vandermonde, como métodos alternativos de interpolação,
em busca de melhor desempenho computacional.

Além disso, será analisado o tempo de execução em função do número de shares, uma variável
de suma importância, tendo em vista que impacta diretamente na eficiência do sistema como um
todo. Isso se deve ao fato de que o aumento exponencial da quantidade de shares tem implicações
diretas na performance do sistema, sendo crucial entender essas variáveis para aplicações práticas,
principalmente em sistemas distribuídos.

O conteúdo das próximas seções está organizado da seguinte forma: A Seção 2 apresenta o
método de Computação Segura de Múltiplas Partes, conhecido como Shamir Secret Sharing. Em
seguida, na Seção 3, é fornecido um resumo dos métodos de interpolação a serem considerados para
o presente trabalho, a saber: Newton e Vandermonde. Na Seção 4, abordamos o experimento feito,
com as configurações utilizadas, alterações realizadas, tanto do método de interpolação, quanto no
número de shares utilizados, e a análise feita referente aos resultados obtidos. Por fim, na Seção
5, são apresentadas as considerações finais e os interesses referentes a trabalhos futuros.
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2 Shamir Secret Sharing

O Shamir Secret Sharing, ou Compartilhamento de Segredo de Shamir em português, pertence
ao campo de Multi-Party Computation (MPC) em criptografia, que tem como finalidade desen-
volver abordagens em que seu processamento é compartilhado entre várias partes, sem que elas
possuam o conhecimento sobre as outras partes. O Shamir Secret Sharing, proposto por [5], para
realizar tal feito, baseia-se na interpolação de Lagrange no Corpo Finito, descrito abaixo por [2].

Teorema 2.1. Seja f : R → R uma função conhecida em n + 1 pontos distintos x0, x1, . . . , xn,
com os respectivos valores f(x0), f(x1), . . . , f(xn). O polinômio interpolador de Lagrange é
definido como:

Pn(x) =

n∑
i=0

f(xi)ℓi(x), (1)

onde os polinômios básicos de Lagrange ℓi(x) são dados por:

li(x) =

n∏
j=0
j ̸=i

x− xj

xi − xj
. (2)

A construção do polinômio interpolador de Lagrange garante que Pn(x) satisfaz a condição
de interpolação, ou seja, Pn(xi) = f(xi) para todo i = 0, 1, . . . , n. Além disso, a interpolação
polinomial de Lagrange é única, sendo o único polinômio de grau no máximo n que interpola os
dados fornecidos.

Seu passo a passo é descrito a seguir:

Etapa 1. Dealer D escolhe o grande primo p, que o corpo será definido, e com o segredo s gera o
polinômio de grau k − 1 da forma:

f(x) = a0 + a1x+ a2x
2 + · · ·+ ak−1x

k−1mod p, (3)

onde a0 = s, p > n e a0, a1, · · · ak−1 ∈ Zp são escolhidos aleatoriamente, exceto a0.

Etapa 2. D calcula as n partes do processo:

sharei = (i, f(i)), (4)

e envia para cada um dos Pi via canal seguro, com i = 1 a n.

Etapa 3. Para a reconstrução assumimos que4 {Pi}ki=1 enviem suas shares {si}ki=1. Usando a
interpolação de Lagrange com suas shares, encontramos o segredo da seguinte forma:

s = a0 = f(0) =

k∑
i=1

f(i)

k∏
j=1,j ̸=i

−j

(i− j)
mod p. (5)

4Neste caso, estamos sinalizando a variação na cardinalidade, não o índice de participantes.
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3 Métodos de Interpolação
Nesta seção, abordamos os métodos de interpolação considerados para utilizar na reconstrução

dos dados no contexto do Secret Sharing. A interpolação é uma técnica essencial para estimar
valores desconhecidos a partir de um conjunto de dados discretos, e, neste estudo, exploramos dois
métodos amplamente utilizados: o método de Newton e o método de Vandermonde. Cada subseção
a seguir apresenta um resumo dos métodos, com o objetivo de fornecer uma compreensão de como
essas abordagens podem ser aplicadas e os impactos que geram nos resultados da reconstrução de
dados.

3.1 Newton
O método de interpolação de Newton é um método numérico utilizado para encontrar um

polinômio, baseado em diferenças divididas para calcular coeficientes. Esse método é eficiente
para adicionar novos pontos sem recalcular toda a interpolação. Tal método é muito útil quando
temos fatores de autenticação extra como, por exemplo, um sistema Multi Factor Authentication
- Autenticação MultiFator (MFA), como em [1]. O método aqui apresentado está de acordo com
[2],

Teorema 3.1. Seja f : R → R uma função conhecida em n + 1 pontos distintos x0, x1, . . . , xn,
com os respectivos valores f(x0), f(x1), . . . , f(xn). O polinômio interpolador de Newton é definido
como:

Pn(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1)

+ . . .+ f [x0, x1, . . . , xn](x− x0)(x− x1) . . . (x− xn−1),
(6)

onde os coeficientes f [x0, x1, . . . , xk] são as diferenças divididas de f , definidas recursivamente por:

f [xi] = f(xi), (7)

f [xi, xi+1, . . . , xi+k] =
f [xi+1, . . . , xi+k]− f [xi, . . . , xi+k−1]

xi+k − xi
, k ≥ 1. (8)

3.2 Vandermonde
A interpolação de Vandermonde utiliza um sistema linear baseado em uma matriz com potências

dos valores de entrada para determinar os coeficientes de um polinômio interpolador. Dado um
conjunto de n + 1 pontos (x0, y0), (x1, y1), . . . , (xn, yn), onde todos os xi são distintos, o objetivo
é encontrar os coeficientes a0, a1, . . . , an de um polinômio P (x) na forma, conforme [2]:

P (x) = a0 + a1x+ a2x
2 + · · ·+ anx

n, (9)
tal que, P (xi) = yi para cada i = 0, 1, . . . , n.

Ao substituir cada par (xi, yi) na equação do polinômio, obtemos um sistema de equações
lineares:

a0 + a1x0 + a2x
2
0 + · · ·+ anx

n
0 = y0,

a0 + a1x1 + a2x
2
1 + · · ·+ anx

n
1 = y1,

...

a0 + a1xn + a2x
2
n + · · ·+ anx

n
n = yn.

(10)
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Este sistema pode ser escrito na forma matricial como V A = Y , onde A é o vetor dos coeficientes
([a0, a1, . . . , an]T ), Y é o vetor dos valores y ([y0, y1, . . . , yn]T ), e V é a matriz de Vandermonde:

V =


1 x0 x2

0 . . . xn
0

1 x1 x2
1 . . . xn

1
...

...
...

. . .
...

1 xn x2
n . . . xn

n

 . (11)

O determinante da matriz de Vandermonde é dado por:

det(V ) =
∏

0≤i<j≤n

(xj − xi). (12)

4 Experimento
Nesta seção, apresentamos os detalhes experimentais realizados para a análise dos impactos

das mudanças nos parâmetros e nos métodos utilizados em nossa simulação. A primeira subseção
descreve a configuração da máquina utilizada. Em seguida, discutimos a análise da alteração do
método de interpolação, investigando como diferentes técnicas afetam o desempenho e os resultados
da simulação. Posteriormente, abordamos a análise da alteração do número de shares necessários
para a reconstrução do Secret Sharing, explorando o impacto dessa modificação no sistema. Por
fim, analisamos todos os dados resultantes obtidos.

4.1 Configurações
Para a simulação dos cenários apresentados, o código foi criado na linguagem Python versão

3.11.9, executado por meio do Integrated Development Environment (IDE) Visual Studio Code
versão 1.95, em um computador Intel Core I3 com 4 GB de memória e um Solid-State Drive (SSD)
de 480 GB. Para verificação do tempo de desempenho de cada algoritmo foi utilizado a função
perf_counter(), que retorna o tempo em segundos, como número de ponto flutuante.

4.2 Alteração do Método de Interpolação
Diferentes técnicas de interpolação podem ter impactos significativos nos resultados, e esta

análise busca comparar como essas variações influenciam a reconstrução dos dados no contexto de
Secret Sharing. Para garantir uma avaliação precisa e isolar a influência da técnica de interpolação,
todos os demais parâmetros do experimento foram mantidos constantes, como exposto na Tabela 1
abaixo.

Tabela 1: Parâmetros básicos.

Cenário 1
Corpo Finito 36313

Número de shares 5
Threshold (k) 3

Segredo 23

Reestruturamos o Shamir Secret Sharing substituindo a interpolação tradicional de Lagrange
pelos métodos de Newton e de Vandermonde, com o objetivo de analisar o desempenho compu-
tacional desta alteração. E com isso temos os tempos de execução obtidos para cada uma das
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técnicas analisadas, que são apresentados na Tabela 2, permitindo uma comparação quantitativa
dos efeitos das diferentes escolhas de interpolação.

Tabela 2: Parâmetros básicos.

Lagrange Newton Vandermonde
Valor recuperado 23 23 23

Tempo de processamento 8.8661 · 10−06 1.2499 · 10−05 5.0692

4.3 Alteração do Número de shares

Esta subseção examina o impacto da modificação do número de shares necessários para a
reconstrução do Secret Sharing.

Temos na Figura 1 o gráfico resultante do tempo médio, em segundos, para o mesmo conjunto
de shares (k) necessários para a reconstrução do segredo, para cada algoritmo de interpolação.
A análise considerou valores de 3, 30, 300, 1500 e 3000 para k (threshold), de modo a evidenciar
melhor a curva de crescimento. O tempo registrado para cada método corresponde à média obtida
em 100 simulações, garantindo resultados mais consistentes e reduzindo variações indesejadas.

(a) Em escala aritmética. (b) Em escala logarítmica.

Figura 1: Comparação dos métodos de interpolação em relação à quantidade de shares (k) utilizada.
Fonte: Elaboração própria.

4.4 Análise
O principal questionamento levantado foi se a alteração do método de interpolação poderia

melhorar o desempenho computacional do Shamir Secret Sharing, considerando que, tradicional-
mente, ele é implementado com a interpolação de Lagrange. Além disso, investigou-se de que forma
a variação no número de shares influenciaria o processo como um todo.

Como todos os métodos de interpolação estão sendo aplicados dentro do corpo finito, não
iremos analisar questões de aproximação e arredondamento, tendo em vista que são tratados apenas
números inteiros pertencentes ao corpo Zp.

O comportamento das curvas presente nas Figura 1 está em conformidade com a complexidade
teórica prevista para esses métodos, sendo de O(n2) para interpolação de Lagrange e Newton
e O(n3) para interpolação de Vandermonde. O crescimento mais acentuado é o Vandermonde
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(linha verde da Figura 1) porque envolve a resolução de um sistema linear com uma matriz de
Vandermonde. Essa matriz pode ser mal-condicionada para grandes graus de polinômio, levando
a alta complexidade computacional. Já o crescimento da interpolação de Newton (linha vermelha
da Figura 1) ocorre pelo fato de que a interpolação de Newton exige o cálculo de diferenças
divididas, cujo custo computacional se torna expressivo em grandes entradas. Por outro lado, a
curva correspondente ao métodos de Lagrange, linhas azul da Figura 1, exibem um crescimento
mais contido ao longo do aumento do número de shares.

A interpolação de Lagrange é amplamente utilizada em Secret Sharing, principalmente no
Shamir Secret Sharing, devido ao bom compromisso entre eficiência e implementação prática em
operações modulares. Diferente do método de Newton, que exige um pré-processamento complexo
ou armazenamento de coeficientes adicionais, para que possa permitir atualização incremental sem
reprocessamento total. Diferente também do método de Vandermonde, que exige a solução de um
sistema linear com uma matriz que pode ser computacionalmente intensiva.

5 Considerações Finais
Neste trabalho, mostramos uma análise sobre a alteração do método de interpolação para o

esquema criptográfico do Shamir Secret Sharing, além de mostrar a influência da alteração na
quantidade de shares utilizadas no processo. Apresentamos o desempenho computacional e teórico
pelo qual se baseia o fato do método de Lagrange ser amplamente utilizado para fins criptográficos,
principalmente no contexto de aplicações dentro do corpo finito.

Como trabalhos futuros, pretende-se estender essa metodologia de análise a outros métodos de
Secret Sharing, como o esquema de Blakey, que se baseia na resolução de sistemas de hiperplanos.
Além de expandir tal análise para casos reais, como em sistemas de autenticação de multifatores,
privacidade em dados de rede elétrica e afins.

Uma alternativa de estudo para os métodos que apresentaram os piores desempenhos, sobretudo
em cenários com grande número de shares, é a adoção de técnicas de paralelismo. Acreditamos
que, utilizando esta abordagem, podem ser mitigadas e, assim, pode-se otimizar o tempo de pro-
cessamento, principalmente quando o cenário exige alta demanda computacional.
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