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Abstract. Scaling improves the performance of iterative solvers for large, sparse linear systems by
enhancing conditioning and balancing row and column magnitudes. This work highlights a tailored
scaling approach for linear systems arising from Adaptive Implicit Method (AIM) discretization in
multiphase porous media flow equations. The method focuses on conditioning implicit equations to
reduce computational costs and improve solver efficiency. We compare this approach with general
algorithms, such as Sinkhorn-Knopp and Ruiz, using the GMRES solver. Results show that the
tailored method enhances convergence and outperforms general-purpose techniques in reservoir
simulation, highlighting the benefits of problem-specific scaling strategies in large-scale simulations.
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1 Introduction

Scaling is a widely used technique to enhance the performance of iterative methods when
solving large, sparse linear systems. The primary goal of scaling is to transform the original
system into an equivalent one where the rows and columns have similar magnitudes, leading to a
better-conditioned system. This improves the convergence behavior of iterative solvers, which is
crucial for efficiently solving large-scale problems. In addition to improving convergence, proper
scaling allows the use of low-precision arithmetic, a growing area of interest in scientific computing.
Low-precision arithmetic can offer significant performance gains, especially with modern hardware,
such as GPUs, which are optimized for such operations [1]. Several scaling techniques have been
proposed in the literature, including row and column scaling, diagonal scaling, and the more general
methods like the Sinkhorn-Knopp [6] and Ruiz [2] algorithms, which aim to balance the norms of
rows and columns to achieve a more stable system.

In the specific context of reservoir simulation, proper scaling plays a critical role in the efficiency
of solving the discretized equations that model multiphase flow through porous media. As the
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complexity of reservoir models increases, so do the size and condition of the resulting linear systems,
which can severely affect the performance of solvers. Several researchers have investigated the
impact of scaling techniques on the performance of iterative solvers for reservoir simulation, with a
focus on improving the conditioning of the matrix and reducing the number of iterations required
for convergence.

This work shows a scaling approach tailored to the linear systems arising from the Adaptive
Implicit Method (AIM) discretization of multiphase porous media flow equations. This scaling ap-
proach addresses the necessary decoupling of implicit and explicit variables in the system. Specifi-
cally, the method involves scaling the resulting linear system of implicit variables, with particular
emphasis on improving the conditioning of the implicit equations. This method provides a system-
atic way of improving the conditioning of the matrix, making it more amenable to fast convergence
in reservoir simulation applications. This technique promises to enhance the performance of nu-
merical solvers, ultimately reducing computational costs and improving the accuracy of reservoir
simulations.

Furthermore, we will compare the scaling approach presented in this work with more general
algorithms, such as the Sinkhorn-Knopp and Ruiz methods, using the GMRES [5] solver. These
algorithms aim to balance the norms of the rows and columns, achieving a well-conditioned system
that facilitates faster convergence and potentially more robust numerical behavior. By analyz-
ing the performance of tailored scaling method alongside these established algorithms within the
GMRES solver, we seek to highlight the specific advantages and applicability of our approach for
reservoir simulation. Although this scaling strategy may benefit other problems involving large
linear systems. Examples include geomechanics, multiphysics simulations, and inverse problems in
geophysics, where matrix conditioning and variable coupling structures are also critical.

2 Description of AIM System

We are interested in the solution of the linear system Jx = b where J is the Jacobian ma-
trix resulting from the application of Newton’s method to the nonlinear set of algebraic equations
resulting from the AIM discretization of the multiphase porous media flow equations. For each
cell in the discretized domain, a set of n equations is solved simultaneously and the correspond-
ing unknowns are the pressure p and n — 1 transport variables X;, such as saturations and/or
compositions. This grouping of equations and variables related to a single cell naturally suggests
a block structure for the Jacobian matrix .J, where each block Jj; corresponds to a small n x n
submatrix associated with cell interactions. In the AIM discretization, pressure is always treated
implicitly, while the transport variables can be either explicit or implicit. The decision on whether
a cell should have implicit treatment only for pressure or for all unknowns is based on the flow
conditions and varies along the simulation both in space and time. The implicit/explicit treatment
determines the sparsity of the Ji; blocks. While the diagonal blocks Jj; are always dense, the
columns associated with the explicit unknowns are zero in Ji; for k # j. As it will be explained
in the next section, this internal structure of the blocks can be explored to decouple implicit and
explicit variables.

3 Decoupling Explicit Variables

Recalling the discussion in the previous section, one block-row of the AIM matrix for an explicit
cell with two implicit and two explicit neighbors can be depicted as
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E I Diag - E E I
r X1 X2 r X1 X2 rp X1 X2 r X1 X2 p X1 X2
x 0 0 x x x x x x x 0 0 x x x . (1)
x 0 0 x x x x x x x 0 0 x x x
x 0 0 x x x x x x x 0 0 x x x

The pressure implicit variable is only coupled to the explicit ones through the nonzeros of the first
row of the diagonal block. Zeroing out those entries decouples pressure (implicit) from explicit
variables:

E I Diag - E E 1
p X1 X2 X1 X2 p X1 X2

p p
* 0 0 * * * * 0 0 * 0 0
x 0 0 x x x x x X x 0 0
x 0 0 x x x x x x x 0 0

In order to describe this operation mathematically, let k& be the index for the block-row corre-
sponding to a cell with explicit treatment. Separating out the pressure from the explicit variables,
Jrr can be written as

. 2)
.

(3)

where ay, is a scalar, ug and vy are n—1 vectors and Ay, is an order n—1 matrix. ay and uy contain
the derivatives with respect to pressure, while vy and Ay contain the derivatives with respect to
the explicit variables. Define Sy as

T
_ |% Vg
Ik = [Uk Ak] ,
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Sk:|: Uk Ak

] such that SpJi, = [Bk 0 ] , (4)

where 7, = —A,;TU;€7 Br = ap + ﬁ{uk, I; is the order-t identity matrix, and A is assumed
invertible. The matrix Sy enables the decoupling between implicit and explicit variables. More
precisely, the system Jx = b becomes:

|:Jei Jee:| |:xe:| N |:be:| . (5)
where subscripts i and e refer to the implicit and explicit equations and variables, respectively:
x; is the vector with the implicit unknowns, z. is the vector with the explicit unknowns and so
forth. To see that this is indeed the case, let Dg be the block-diagonal matrix where each block is
Dg,, = Sk if cell k is treated explicitly, and Dg,, = I,, otherwise (implicit treatment) and P be
the permutation matrix that reorders implicit unknowns first. Linear system Jxz = b is equivalent
to (PDgJPT)(Px) = PDgb which will be in the desired form (5). J;; has a block structure with
blocks of sizes n xn, nx 1, 1 xn and 1 x 1, since block rows and columns associated with cells with
explicit treatment will have size one, corresponding to pressure which is treated implicitly, while
the ones corresponding to cells with implicit treatment will have size n. Je. is a block-diagonal
matrix, whose blocks are the order n — 1 matrices Ay from (3), and J.; contains blocks of sizes
(n—1)x 1 and (n — 1) x n corresponding to the dependencies between the explicit equations and
the implicit variables.

Solution of the decoupled system (5) proceeds in two steps: Solve Jjz; = b; and z. =
J .t (be — Jeiz;). Due to the block-diagonal structure of Je, step 2 can be easily accomplished
and requires low computational effort. On the other hand, step 1 is the most computationally
demanding and requires the use of specialized iterative techniques to achieve high efficiency. In
this context, a proper scaling of J;; can play a role, and this is the motivation to consider the
application of the row and column scaling algorithms described in the next section.

We close this section mentioning that several references in the literature use Jy kl to decouple
implicit from explicit variables. Using the inverse of the diagonal block does provide the desired
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decoupling, as depicted below for the same explicit block-row with two implicit and two explicit
E ce I Diag - E E cee I
1 X2 X1 X2 p X1 X2 X1 X2

neighbors example as before:
r A1 22 P
0 0 * * " 1 0 0 0 0
0 0 * * * 0 1 0 0 0
0 0 * * * 0 0 1 0 0

However, it unnecessarily modifies the explicit equations, resulting in a much more expensive
procedure. Indeed, while applying Sk to a vector is an O(n) operation, multiplying by the inverse
of diagonal block requires O(n?) operations. In our experience, for problems where the linear
systems are not very hard to solve and a relatively small number of iterations is needed, the cost
of this decoupling step can be substantial, particularly when the percentage of cells with explicit
treatment is large.

Using J,;kl also scales the resulting pressure equations, with ones appearing in the diagonal.
We note that this could be easily achieved without modifying the explicit equations by employing

g — [ﬂél ﬂ;lﬂ{] (7)

X

Rl
]

¥ % ¥
* k¥

1

instead of S;. Since [ﬁ,; ! ﬁ;lﬁ,{] is the first row of Jk_kl, this approach results in the same
implicit matrix as multiplying by the inverse diagonal block.

4 Iterative Methods for Matrix Equilibration

This section explores the principles and steps involved in both the Sinkhorn-Knopp and Ruiz
algorithms. We will compare this iterative process with the method shown in this paper. R.
Sinkhorn and P. Knopp [6] proposed an iterative process aimed at transforming a non-negative
matrix A into an approximately doubly stochastic matrix. A doubly stochastic matrix is one in
which all rows and columns sum to 1, and all elements are non-negative. The output of this process
consists of two diagonal matrices, R and C, such that R- A-C is approximately doubly stochastic.
This algorithm has been applied across various fields, including Optimal Transport, Image Normal-
ization, Economic Equilibrium, and Scaling for Iterative Linear Methods [3]. The Sinkhorn-Knopp
theorem states that, given a nonnegative matrix A, a necessary and sufficient condition for the
existence of a doubly stochastic matrix P = R- A - C, is that A has total support. Furthermore,
if this matrix P exists, it is unique. Moreover, the matrices R and C' are also unique up to a
scalar multiple if and only if A is fully indecomposable [6]. The application of the Sinkhorn-Knopp
algorithm as a preconditioner stems from its ability to balance the rows and columns of a matrix,
which can significantly improve the condition number and, in turn, enhance the convergence rate of
iterative solvers. By scaling the matrix to achieve this equilibrium, the algorithm mitigates the nu-
merical instability often caused by large variations in the magnitudes of the matrix elements. This
balanced structure can reduce error propagation, which is especially beneficial for ill-conditioned
matrices commonly encountered in numerical simulations and optimization problems.

Additionally, the preconditioning effect helps align the eigenvalues, further improving the ef-
ficiency of methods such as GMRES or Conjugate Gradient. In general, the Sinkhorn-Knopp
algorithm as a preconditioner offers a straightforward yet powerful tool to achieve faster and more
stable convergence in various computational applications [2, 6].

The Ruiz Algorithm [2] is an iterative method designed to balance the norms of the row and
column of a matrix, originally using the norm || - ||«. By iteratively scaling each row and column
to achieve approximately equal norms, this algorithm effectively reduces the condition number of
the matrix, making it a valuable tool to improve the performance of numerical solvers [3]. The
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Ruiz Algorithm is widely applied in areas such as sparse linear systems, where balanced matrices
improve the efficiency of iterative solvers; optimization, where scaling enhances the reliability of
convergence in algorithms; and machine learning, where it is used in preconditioning large datasets
to facilitate more robust training and convergence in gradient-based methods [3]. Given a matrix
A of size N x N, the Ruiz Algorithm aims to adjust A such that the maximum norm || - ||« of each
row and each column approaches uniformity. The algorithm starts with identity matrices R and C,
which hold the scaling factors for rows and columns, respectively. During each iteration, diagonal
matrices R and C are computed, with their diagonal entries given by the inverse square roots of the
row and column norms. These matrices are applied to update R and C, and the process continues
until convergence.

5 Results

This section presents a comparative analysis using twelve AIM matrices derived from two
realistic simulations: Unisim and Olympus. The results are summarized in Tables 1 and 2. The
Unisim matrices originate from the Unisim-III benchmark model, a synthetic yet realistic pre-
salt reservoir model developed by the UNISIM research group at the University of Campinas
(UNICAMP).®. The Olympus matrices are derived from the Olympus benchmark model, developed
by the Group of Technology in Energy and Petroleum (GTEP) at PUC-Rio”. This model evaluates
geomechanical effects using realistic multiphysics conditions. All experiments were conducted
using implementations in C++, running on a system equipped with an Intel Core i9-14900HX
processor and 64GB of RAM. The GMRES iterative solver and the associated preconditioners
were implemented using the Eigen C++ library?®.

Let A be the original system matrix and b the corresponding right-hand side (RHS). Define
A and b as the scaled matrix and RHS, respectively. Let x denote the exact solution and & the
solution to Az = b obtained via GMRES. For the comparative analysis, we evaluate the following
metrics, with the column identifiers as shown in Tables 1 and 2: the number of GMRES iterations
to reach a specified tolerance (#Iter); the name of the scaling used, with "NoScale" indicating
the original matrix (Scaling); the relative error |z — #|/|z| computed using BICGSTAB |[7] with a
tolerance of le-16 (Sol. Error); the final preconditioned relative residual norm |PAZ — Pb|/|Pb)
(Prec. Res. Norm); the final relative residual norm |AZ — b|/|b| (Res. Norm); and the number of
iterations of the scaling algorithm, applicable only to Sinkhorn-Knopp and Ruiz methods (Scal.
#lIter). For these experiments, the preconditioner used was Incomplete LU decomposition with
threshold [4].

The choice of tolerance in scaling algorithms significantly affects both computational cost and
solution accuracy. In this study, a fixed tolerance of 1le-3 was used for the SK and Ruiz algorithms to
balance efficiency and robustness. Stricter tolerances can improve matrix conditioning and reduce
GMRES iterations but increase the cost of the scaling phase, while looser tolerances may reduce
scaling effort at the expense of GMRES performance. FEmpirically, the le-3 setting provided a
practical trade-off, improving convergence without excessive overhead. Based on the results shown
in Tables 1 and 2, we can conclude that the Row and SK scalings produced very similar results,
especially in terms of the number of GMRES iterations and the error relative to the system’s
solution. We conducted a computational time analysis of the scaling methods for the Olympus
1 and Unisim 1 matrices. All reported times represent the average over 100 runs to mitigate
fluctuations. While each iteration of the Sinkhorn-Knopp (SK) method is more efficient than
the others, it requires a significantly larger number of iterations. For instance, SK required 1084

Shttps://www.unisim.cepetro.unicamp.br/benchmarks/br/unisim-iii
“https://gtep.com.br/index.php/reservoir-geomechanics/
8https://eigen.tuxfamily.org/
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Table 1: Results for Unisim using GMRES preconditioned with ILUT with a tolerance of le-10,
while scaling algorithms were tested with a tolerance of 1e-3. The matrix has an order of 230,408
with 1,397,085 non-zero elements.

#  Scaling  #lter Sol. Error Prec. Res. Norm  Res. Norm  Scal. #Iter

NoScale 7 7.8192e-11 2.3167e-11 1.4577e-09 -

1 Row 3 2.6400e-12 1.9312e-12 1.4805e-12 -
SK 3 1.1425e-12 2.2292e-13 2.5045e-13 3149

Ruiz 4 9.1314e-10 9.8552e-13 7.8145e-11 14

NoScale 8 1.2889%e-11 4.5220e-12 1.1684e-12 -

9 Row 3 1.2841e-11 7.4004e-13 3.8744e-13 -
SK 3 1.2841e-11 1.6469e-13 4.4404e-14 2936

Ruiz 5 1.1241e-08 6.7093e-11 6.9467e-10 14

NoScale 9 6.3618e-12 4.6089e-12 9.5871e-11 -

3 Row 4 2.2297e-13 2.0323e-13 2.4374e-13 -
SK 4 3.5927e-13 1.5897e-14 3.1020e-14 2795

Ruiz 6 3.2120e-08 4.3786e-11 1.3563e-08 14

NoScale 10 1.0686e-10 3.1484e-11 2.0771e-10 -

4 Row 4 4.1286e-12 2.9097e-12 4.7411e-12 -
SK 4 9.9079e-11 3.1977e-11 1.5416e-10 2606

Ruiz 9 2.4082e-09 3.8407e-12 1.0255e-09 14

NoScale 10 2.6039e-10 1.9038e-11 1.4750e-10 -

5 Row 4 1.0334e-10 5.2727e-11 7.1679e-11 -
SK 5 3.1398e-12 4.0953e-13 1.3891e-12 2014

Ruiz 11 8.3328e-09 2.4544e-11 9.7388e-10 14

NoScale 10 3.8428e-10 6.3508e-11 6.2494e-11 -

6 Row 5 2.5423e-11 2.4244e-11 2.1204e-11 -
SK 5 3.1232e-11 1.4140e-11 4.9682e-11 1724

Ruiz 12 8.0534e-09 3.5254e-11 4.8041e-09 14

iterations to converge for the Olympus 1 matrix, with an average time of 2.23 ms per iteration,
resulting in a total execution time of 2421.65 ms. For the Unisim 1 matrix, SK required 3.22 ms per
iteration, totaling 10139.78 ms. In contrast, the Ruiz method required only 13 and 14 iterations for
Olympus 1 and Unisim 1, respectively, with per-iteration times of 9.29 ms and 11.84 ms (for total
times of 120.74 ms and 165.76 ms). The Row scaling method, which is a direct method, achieved
the lowest total execution times: 22.88 ms for Olympus 1 and 26.39 ms for Unisim 1. For context,
each GMRES iteration took approximately 11.38 ms (Olympus 1) and 8.33 ms (Unisim 1). These
results confirm that, in addition to reducing the number of GMRES iterations, the Row technique
provides significant computational efficiency.

6 Conclusion

This work presents a tailored scaling approach for linear systems arising from the Adaptive
Implicit Method (AIM) discretization in multiphase porous media flow equations. The method was
explained in detail and compared with general-purpose scaling algorithms. Our results demonstrate
that the tailored strategy improves the conditioning of implicit equations, leading to enhanced
solver performance and reduced computational costs in reservoir simulation applications.

The results indicate that the Row scaling approach effectively reduces the number of GMRES
iterations required for convergence while maintaining low solution error and residual norms. In
particular, the method highlighted in this work, consistently outperformed general algorithms in
terms of efficiency, achieving faster GMRES convergence with fewer computational effort compared
to Sinkhorn-Knopp, while also providing more robust conditioning than the Ruiz method. These
findings highlight the importance of domain-specific scaling techniques in large-scale simulations,
where computational efficiency and accuracy are critical.
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Table 2: Results for Olympus using GMRES preconditioned with ILUT with a tolerance of le-6,
while scaling algorithms were tested with a tolerance of le-3. The matrix has an order of 199,057

with 1,380,877 non-zero elements.
# Scaling #Iter Exact Sol. Error GMRES Prec. Error GMRES Error  Scal. #lter

NoScale 16 5.5721e-07 5.9585e-07 1.5599e-05 -

1 Row 12 1.0938e-06 7.7398e-07 6.6876e-07 -
SK 13 1.6609e-06 5.7377e-07 1.6578e-06 1084

Ruiz 18 1.2800e-06 6.0068e-07 9.5553e-06 13
NoScale 21 1.3821e-06 8.4714e-07 4.9526e-05 -

9 Row 18 1.1521e-06 9.6338e-07 1.2249e-06 -
SK 18 1.7612e-06 6.6996e-07 4.2827e-06 1087

Ruiz 22 1.5785e-06 8.7252e-07 1.8781e-05 13
NoScale 27 1.7714e-06 9.1594e-07 1.2999¢-04 -

3 Row 22 8.9344e-07 8.2157e-07 1.4038e-06 -
SK 23 2.1875e-06 6.9634e-07 5.5338e-06 1088

Ruiz 29 1.7659e-06 7.1836e-07 6.5063e-05 13
NoScale 42 2.3337e-06 8.5617e-07 7.4607e-05 -

4 Row 30 7.4950e-07 5.8878e-07 2.9671e-06 -
SK 30 2.5215e-06 9.6747e-07 2.8685e-05 1088

Ruiz 42 1.1178e-06 8.0780e-07 6.1023e-05 13
NoScale 51 5.0916e-06 8.1285e-07 1.7686e-04 -

5 Row 41 2.1862e-06 8.2383e-07 2.2555e-06 -
SK 41 3.0160e-06 9.9793e-07 1.4265e-05 1089

Ruiz 50 3.1641e-06 9.4062e-07 6.8470e-05 13
NoScale 55 1.4236e-06 8.0144e-07 3.6464e-06 -

6 Row 44 1.3846e-06 9.0887e-07 2.0565e-07 -
SK 42 5.1367e-07 6.0111e-07 5.4134e-06 1089

Ruiz 52 8.5355e-07 8.9788e-07 2.4286e-05 13
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