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Resumo. A identificação do estilo musical a qual pertence uma música é uma tarefa relativamente
simples para um humano, mesmo com pouco treinamento musical. Entretanto, é uma tarefa difícil
a ser realizada de forma automatizada. Neste trabalho, utilizamos a transformada Wavelet, que
representa uma música em suas componentes de frequência em função do tempo, gerando uma
imagem denominada espectrograma. A partir dos espectrogramas, a Rede Neural Convolucional
foi treinada com o objetivo de classificar os sinais de áudio de acordo com os seus estilos musicais.
Foi utilizada apenas metade de cada sinal de áudio para gerar os espectrogramas, resultando em
um total de 6.075 músicas para treinamento e 2.025 para teste provenientes de 10 estilos musicais
– Blues, Clássico, Country, Disco, Hip Hop, Jazz, Metal, Pop, Reggae e Rock. Os dados para
treinamento e também para previsão foram escolhidos aleatoriamente em cada estilo musical para
que fossem executadas 1000 épocas de treinamento, a medição foi repetida 10 vezes para cada
estilo musical, deste modo garantindo o processo estocástico. A acurácia de treinamento obteve o
melhor resultado com 90% das imagens (8100) de aproximadamente 82%. Os estilos Reggae, Jazz,
Hiphop, Country, Classical e Blues obtiveram os seguintes melhores valores médios de previsões
certas respectivamente: 94%, 88%, 82%, 90%, 91% e 83%.

Palavras-chave. Processamento de Sinais, MIR, Transformada Wavelet, Coeficientes Wavelet,
Rede Neural Convolucional

1 Introdução

As Redes Neurais Convolucionais (do inglês, “Convolutional Neural Networks (CNN)”) têm
se destacado na Visão Computacional por sua eficácia em reconhecimento, restauração e geração
de imagens. Além de imagens fotográficas, sinais temporais, como áudio, podem ser convertidos
em representações visuais para análise. Entretanto, o treinamento dessas redes enfrenta desafios
relacionados à quantidade e qualidade das imagens, afetando a generalização e a capacidade de
extração de características relevantes [3].

Este trabalho investiga a aplicação de CNNs na classificação de áudio, utilizando imagens ge-
radas a partir dos coeficientes da transformada Wavelet. A contribuição principal é o uso de
aprendizagem profunda com representações Wavelet, visando aprimorar a previsão do estilo musi-
cal.
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2 Transformada Wavelet

As transformadas Wavelet, assim como as de Fourier, realizam uma projeção linear do sinal
em uma função base para extrair informações relevantes [5]. No entanto, ao contrário das funções
cossenoidais de Fourier, as Wavelets possuem domínio compacto, permitindo localizar e analisar
características do sinal no tempo e na frequência simultaneamente.

O espectrograma obtido pela transformada de Fourier não é localizado, enquanto a transfor-
mada de Fourier janelada melhora essa localização. Já as transformadas Wavelet oferecem locali-
zação e multiescala, permitindo uma análise mais refinada. As funções Wavelet derivam de uma
Wavelet Mãe ψ de média zero, dilatada pelos parâmetros de escala s e posição u [16]:

Ψs,u(t) =
1√
s
Ψ

(
t− u

s

)
, u ∈ R, s > 0 (1)

A transformada Wavelet projeta um sinal x(t) dentro de uma janela de tempo chamada “Wa-
velet”, ela é transformada para permitir um redimensionamento da escala s onde a mudança da
localização da frequência acontece e a Wavelet pode ser deslocada no tempo para qualquer locali-
zação da translação u que é o termo da direita, Ψ é o tipo de Wavelet escolhida fazendo u variar
no tempo t e a escala s variar na frequência ω [4]:

Wψ(s, u) =

∫ ∞

−∞
f(t)ψs,u(t)dt (2)

A transformada Wavelet Haar foi desenvolvida em 1910 e é a Wavelet mais simples, sendo
usada para decomposição de sinais por meio de componentes aproximados e detalhados [8]. Já
a Wavelet Morse Generalizada é indicada para sinais modulados, sendo definida no domínio da
frequência [15]. A característica fundamental da transformada Wavelet é a manipulação da escala
da frequência com a translação no tempo com a vantagem do tamanho de janela não ser constante,
isto faz com que a manipulação dos parâmetros de escala “s” e o de translação “u” exerçam um
papel importante no emprego dessa técnica. A figura 1 ilustra como esses parâmetros se deslocam
de forma mais geral.

Figura 1: Parâmetro s se desloca pela dimensão da frequência, assim como o parâmetro u se
desloca por meio da dimensão do tempo. Elaborado pelo autor, 2022.

O parâmetro de escala “s” de uma Wavelet tem o significado de poder dilatar ou contrair a
Wavelet Mãe, de tal modo que, quanto menor o valor de escala “s”, mais contraída será a Wavelet
e, considerando esta característica, a escala está relacionada com a frequência do sinal que diminui
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a escala “s” fazendo com que a Wavelet seja comprimida e os detalhes da transformada mudem
rapidamente em uma alta frequência ω. Essa capacidade de ajuste dinâmico permite melhor
representação de sinais em diferentes escalas de frequência [21]. A flexibilidade da transformada
Wavelet permite a análise de sinais variáveis no tempo e na frequência, sendo amplamente aplicada
em processamento de sinais e aprendizado de máquina [2, 16].

Uma alta escala “s” implica em uma Wavelet dilatada onde os detalhes da transformada mudam
lentamente em uma baixa frequência ω [16], conforme ilustra a figura 1 com a forma na qual os
domínios variam de formas diferentes. A transformada Wavelet mais simples, conhecida como
Wavelet Haar, foi desenvolvida em 1910 [8]. A sua definição, com um exemplo sintético, apresenta
o resultado de três Wavelets de Haar com Ψ1,0, Ψ1/2,0 e Ψ1/2,1/2 aplicadas em um sinal:

Ψ(t)Haar =

 1, 0 ≤ t < 1
2

−1, 1
2 ≤ t < 1

0, de outra forma.

Esta transformada Wavelet possui a sua versão Discreta onde, dada uma série T = t1, ..., tn, a
Wavelet Haar Discreta transforma a saída em duas séries: as aproximadas Ai e os detalhadas Di,
onde 1 ≤ i ≤ n

2 [14]:

Ai =
t2i−1 + t2i√

2
(3)

Di =
t2i−1 − t2i√

2
(4)

A Wavelet Morse Generalizada é um tipo de Wavelet utilizada em sinais modulados, definida

no domínio da frequência com pico de
(
P
γ2

) 1
γ

:

ψP,γ(ω) = U(ω)αP,γω
P2

γ e−ω
γ

(5)

Uω é a função de etapa de Heaviside. O termo αβ,γ é a constante de normalização da Wavelet.
β e γ são os parâmetros respectivamente responsáveis pelo decaimento e pela simetria da função
Wavelet, mas estão representados pela variável P 2 que é o produto βγ, sendo a largura de banda
pelo tempo [15].

3 Convolutional Neural Network

A Rede Neural Convolucional (CNN) foi desenvolvida para problemas de classificação de ima-
gens, demonstrando grande sucesso nessa tarefa. A imagem de entrada é convertida em uma
matriz de pixels, passando por camadas que identificam padrões e calculam a probabilidade de
classificação [13].

3.1 Convolução

A operação de convolução é denotada por ⋆ entre duas funções, onde x(t) é a entrada e w(a) é
um filtro. A saída é definida como [7]:

s(t) = (x ⋆ w)(t) =

∞∑
a=−∞

x(a)w(t− a) (6)
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3.2 Filtro de Imagem com Camadas Convolucionais
Em camadas convolucionais, os filtros aplicados extraem características da imagem. O mapa

de características é dado por:

Hi = giact[Ki ⋆X+Bi] (7)

3.3 Agrupamento (Pooling)
O pooling reduz a dimensionalidade, mantendo as informações relevantes. A operação de max-

pooling seleciona os valores máximos dentro de uma região, propagando apenas esses valores na
retropropagação [7]:

∂L

∂hi,rj ,ck
=

{
0, rj ̸= r∗j , ck ̸= r∗j ,

∂L
∂pijk

, rj = r∗j , ck = r∗j .
(8)

Essas técnicas tornam as CNNs eficientes para reconhecimento de padrões em imagens [22].

3.4 Camadas Densas
Após as etapas convolucionais e de pooling, os mapas de características são dimensionados e

passados para camadas densas, cuja função é classificar. A combinação dessas camadas permite
que a rede aprenda as características, bordas e texturas até chegar a formas mais complexas [12].

3.5 Processo de Treinamento
A imagem que é inserida na CNN é propagada pela rede, passando por convoluções, ativações

e pooling, até gerar uma predição na saída para tal são necessários algumas iterações.

• Cálculo da Função de Perda: predição de saída é comparada ao rótulo real por meio de
uma função de custo, como a Cross-Entropy Loss para classificação [7].

• Retropropagação: a rede calcula os gradientes dos pesos em relação à perda utilizando o
algoritmo de Backpropagation, combinado à regra da cadeia [17].

• Atualização dos Pesos: os pesos são atualizados por meio de algoritmos de otimização,
como o Stochastic Gradient Descent (SGD), o Adam ou variantes [11].

• Regularização: técnicas como Dropout [18] e Batch Normalization [9] são frequentemente
aplicadas para prevenir overfitting e acelerar o treinamento.

4 Dados Experimentais
A base de dados utilizada é uma coletânea de áudios disponível online3, inicialmente manipu-

lada por Zanetakis et al. para estudos de Recuperação de Informação Musical [20] e amplamente
utilizada em pesquisas acadêmicas [6]. Contém 1000 arquivos de áudio distribuídos igualmente
entre 10 estilos musicais: Blues, Classical, Country, Disco, Hip Hop, Jazz, Metal, Pop, Reggae e
Rock. Cada diretório contém 100 músicas, algumas com versões repetidas, como a "Rhapsody in
Blue"de George Gershwin, presente nos arquivos 44 e 48, totalizando 13 ocorrências semelhantes
[19].

3https://github.com/marsyas/marsyas
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4.1 Organização de Dados

A organização dos dados seguiu três etapas: extração dos coeficientes aproximados da trans-
formada Wavelet, geração de imagens (espectrogramas) e organização dos dados para treinamento
e teste da Rede Neural Convolucional. O método utilizado para garantir a proporcionalidade dos
dados para o treinamento foi o de manter a aleatoriedade na escolha dos arquivos para treinamento
e também para a previsão, uma vez que os dados utilizados no presente trabalho apresentam balan-
ceamento entre as classes [10], em que cada estilo musical possui a mesma quantidade de músicas.

5 Coeficientes e Espectrogramas

5.1 Geração dos Coeficientes

Os arquivos de áudio foram convertidos de au para wav para compatibilidade com o código
desenvolvido, mantendo as propriedades originais. Os coeficientes aproximados foram extraídos
da série temporal de cada áudio utilizando a Wavelet Haar [1]. Esta escolha permitiu capturar a
maior parte do sinal com coeficientes aproximados.

Dada a limitação da base de dados, foram extraídos os coeficientes aproximados de ordens 1
(cA1), 2 (cA2) e 3 (cA3), resultando em 3.000 novas séries temporais.

5.2 Geração dos Espectrogramas e Treinamento da CNN

Cada série temporal foi dividida em três partes iguais para a geração de imagens espectrogramas.
O algoritmo seguiu as etapas: 1) acessar a série temporal do coeficiente aproximado cAn; 2)
determinar o comprimento da série; 3) dividir a série em três segmentos; 4) aplicar a transformada
Wavelet Contínua (CWT); 5) repetir o processo para 3.000 séries, resultando em 9.000 novas
imagens para treinar a Rede Neural Convolucional. O método de escolha dos dados para a fase
de teste foi feito de forma aleatória, garantindo a estocasticidade, em vez de escolher sempre as 10
primeiras imagens sequenciais de cada estilo para serem testadas. O treinamento da Rede Neural
Convolucional teve 75% das figuras utilizadas para treinamento e 25% para validação para cada
grupo (estilo musical).

5.3 Principais resultados

Os resultados abaixo apresentam os valores de previsão de cada estilo musical de acordo com a
quantidade de imagens utilizadas no treinamento. Para cada conjunto de imagens as redes foram
treinadas 10 vezes com 1.000 épocas cada uma com uma taxa de aprendizagem de 0,01. Agrupadas
do seguinte modo: 30% (2.700 imagens), 70% (6.300 imagens) e 90% (8.100 imagens). Os valores
de acerto foram obtidos por meio da escolha aleatória de 90 novas amostras, previstas 10 vezes,
para chegar aos valores médios das tabelas abaixo.

Tabela 1: Utilizados 30% dos dados. Estilo Country obteve média de acerto nas previsões acima de 80%.

30% Blues Classical Country Disco Hiphop Jazz Metal Pop Reggae Rock
Média 0,67 0,56 0,82 0,45 0,57 0,79 0,44 0,63 0,76 0,36
Desvio
padrão 0,08 0,23 0,06 0,13 0,11 0,07 0,15 0,10 0,06 0,16
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Tabela 2: Utilizados 70% dos dados. A média de acertos ficou acima de 80% para a maioria.

70% Blues Classical Country Disco Hiphop Jazz Metal Pop Reggae Rock
Média 0,82 0,84 0,89 0,67 0,83 0,83 0,48 0,67 0,91 0,71
Desvio
padrão 0,09 0,18 0,04 0,12 0,10 0,08 0,11 0,10 0,05 0,12

Tabela 3: Utilizados 90% dos dados. Foram alcançadas algumas médias de acertos maiores iguais a 90%.

90% Blues Classical Country Disco Hiphop Jazz Metal Pop Reggae Rock
Média 0,83 0,91 0,90 0,70 0,82 0,88 0,57 0,61 0,94 0,66
Desvio
padrão 0,11 0,09 0,05 0,08 0,07 0,06 0,12 0,12 0,06 0,09

6 Considerações Finais
Este trabalho abordou a classificação de sinais de áudio em estilos musicais utilizando coefi-

cientes aproximados da transformada Wavelet Discreta. O método proposto gerou novas séries
temporais com apenas metade do sinal (15 s), aumentando o conjunto de imagens utilizadas no
treinamento da Rede Neural Convolucional, o percentual de acerto de alguns estilos foi maior igual
a 90%. Para trabalhos futuros, sugere-se treinar a mesma rede com diferentes tipos de Wavelets,
porém com a mesma quantidade de coeficientes aproximados a fim de identificar a Wavelet para
obter diferentes resultados.
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