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Resumo. A identificagao do estilo musical a qual pertence uma musica é uma tarefa relativamente
simples para um humano, mesmo com pouco treinamento musical. Entretanto, é uma tarefa dificil
a ser realizada de forma automatizada. Neste trabalho, utilizamos a transformada Wavelet, que
representa uma misica em suas componentes de frequéncia em fungdo do tempo, gerando uma
imagem denominada espectrograma. A partir dos espectrogramas, a Rede Neural Convolucional
foi treinada com o objetivo de classificar os sinais de dudio de acordo com os seus estilos musicais.
Foi utilizada apenas metade de cada sinal de dudio para gerar os espectrogramas, resultando em
um total de 6.075 musicas para treinamento e 2.025 para teste provenientes de 10 estilos musicais
— Blues, Classico, Country, Disco, Hip Hop, Jazz, Metal, Pop, Reggae e Rock. Os dados para
treinamento e também para previsdo foram escolhidos aleatoriamente em cada estilo musical para
que fossem executadas 1000 épocas de treinamento, a medigdo foi repetida 10 vezes para cada
estilo musical, deste modo garantindo o processo estocastico. A acuracia de treinamento obteve o
melhor resultado com 90% das imagens (8100) de aproximadamente 82%. Os estilos Reggae, Jazz,
Hiphop, Country, Classical e Blues obtiveram os seguintes melhores valores médios de previsoes
certas respectivamente: 94%, 88%, 82%, 90%, 91% e 83%.

Palavras-chave. Processamento de Sinais, MIR, Transformada Wavelet, Coeficientes Wavelet,
Rede Neural Convolucional

1 Introducao

As Redes Neurais Convolucionais (do inglés, “Convolutional Neural Networks (CNN)”) tém
se destacado na Visao Computacional por sua eficicia em reconhecimento, restauracao e geragao
de imagens. Além de imagens fotograficas, sinais temporais, como audio, podem ser convertidos
em representacoes visuais para analise. Entretanto, o treinamento dessas redes enfrenta desafios
relacionados a quantidade e qualidade das imagens, afetando a generalizagao e a capacidade de
extragao de caracteristicas relevantes [3].

Este trabalho investiga a aplicacao de CNNs na classificagao de audio, utilizando imagens ge-
radas a partir dos coeficientes da transformada Wavelet. A contribui¢do principal é o uso de
aprendizagem profunda com representagoes Wavelet, visando aprimorar a previsao do estilo musi-
cal.
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2 Transformada Wayvelet

As transformadas Wavelet, assim como as de Fourier, realizam uma proje¢do linear do sinal
em uma fungdo base para extrair informagoes relevantes [5]. No entanto, ao contrario das fungoes
cossenoidais de Fourier, as Wavelets possuem dominio compacto, permitindo localizar e analisar
caracteristicas do sinal no tempo e na frequéncia simultaneamente.

O espectrograma obtido pela transformada de Fourier nao é localizado, enquanto a transfor-
mada de Fourier janelada melhora essa localizagao. Ja as transformadas Wavelet oferecem locali-
zagdo e multiescala, permitindo uma analise mais refinada. As fungoes Wavelet derivam de uma
Wavelet Mae ¢ de média zero, dilatada pelos parametros de escala s e posi¢ao u [16]:

vt = 52

A transformada Wavelet projeta um sinal x(¢) dentro de uma janela de tempo chamada “Wa-

velet”, ela é transformada para permitir um redimensionamento da escala s onde a mudanga da

localizacao da frequéncia acontece e a Wavelet pode ser deslocada no tempo para qualquer locali-

zagao da translagao u que € o termo da direita, ¥ é o tipo de Wavelet escolhida fazendo u variar
no tempo ¢ e a escala s variar na frequéncia w [4]:

t—u
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A transformada Wavelet Haar foi desenvolvida em 1910 e é a Wavelet mais simples, sendo
usada para decomposi¢do de sinais por meio de componentes aproximados e detalhados [8]. Ja
a Wavelet Morse Generalizada é indicada para sinais modulados, sendo definida no dominio da
frequéncia [15]. A caracteristica fundamental da transformada Wavelet é a manipulacéo da escala
da frequéncia com a translagado no tempo com a vantagem do tamanho de janela ndo ser constante,
isto faz com que a manipulacdo dos parametros de escala “s” e o de translagdo “u” exercam um
papel importante no emprego dessa técnica. A figura 1 ilustra como esses parametros se deslocam

de forma mais geral.

A

frequéncia

"s" escala a frequéncia

o——————>

Wavelet Mae
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tempo

"u" desliza no tempo

Figura 1: Parametro s se desloca pela dimensao da frequéncia, assim como o parametro u se

desloca por meio da dimensao do tempo. Elaborado pelo autor, 2022.

O parametro de escala “s” de uma Wavelet tem o significado de poder dilatar ou contrair a
Wavelet Mae, de tal modo que, quanto menor o valor de escala “s”, mais contraida seréd a Wavelet
e, considerando esta caracteristica, a escala esta relacionada com a frequéncia do sinal que diminui
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a escala “s” fazendo com que a Wavelet seja comprimida e os detalhes da transformada mudem
rapidamente em uma alta frequéncia w. Essa capacidade de ajuste dindmico permite melhor
representacao de sinais em diferentes escalas de frequéncia [21]. A flexibilidade da transformada
Wavelet permite a analise de sinais variaveis no tempo e na frequéncia, sendo amplamente aplicada
em processamento de sinais e aprendizado de maquina [2, 16].

Uma alta escala “s” implica em uma Wavelet dilatada onde os detalhes da transformada mudam
lentamente em uma baixa frequéncia w [16], conforme ilustra a figura 1 com a forma na qual os
dominios variam de formas diferentes. A transformada Wavelet mais simples, conhecida como
Wavelet Haar, foi desenvolvida em 1910 [8]. A sua definigdo, com um exemplo sintético, apresenta
o resultado de trés Wavelets de Haar com W1 9, Uy/5 € Wy/51/2 aplicadas em um sinal:

1
2

< 1
outra forma.

1, 0
\Il(t)Haar = _]-7 %
0, de

<t
<t

Esta transformada Wavelet possui a sua versao Discreta onde, dada uma série T = t1,...,t,, a
Wavelet Haar Discreta transforma a saida em duas séries: as aproximadas A; e os detalhadas D;,
onde 1 <14 < § [14]:

to;—1 + to;
A= 3
V2 ®)

D; = toi—1 — to; (4)

V2
A Wavelet Morse Generalizada é um tipo de Wavelet utilizada em sinais modulados, definida

.. Al s . 5
no dominio da frequéncia com pico de (7—132) :

P2 ~

Upy(w) = Ulw)ap,we™ (5)

Uw ¢ a funcdo de etapa de Heaviside. O termo «ag , ¢ a constante de normalizacao da Wavelet.
B e 7 sao os parametros respectivamente responsaveis pelo decaimento e pela simetria da fungao
Wavelet, mas estdo representados pela variavel P2 que é o produto 3y, sendo a largura de banda
pelo tempo [15].

3 Convolutional Neural Network
A Rede Neural Convolucional (CNN) foi desenvolvida para problemas de classificagdo de ima-
gens, demonstrando grande sucesso nessa tarefa. A imagem de entrada é convertida em uma

matriz de pixels, passando por camadas que identificam padroes e calculam a probabilidade de
classificagao [13].

3.1 Convolucao

A operagao de convolugao é denotada por * entre duas fungdes, onde z(t) é a entrada e w(a) é
um filtro. A saida ¢ definida como [7]:

s(t) = (zxw)(t) = Y w(a)w(t—a) (6)
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3.2 Filtro de Imagem com Camadas Convolucionais

Em camadas convolucionais, os filtros aplicados extraem caracteristicas da imagem. O mapa
de caracteristicas é dado por:

3.3 Agrupamento (Pooling)

O pooling reduz a dimensionalidade, mantendo as informagoes relevantes. A operagao de max-
pooling seleciona os valores maximos dentro de uma regiao, propagando apenas esses valores na
retropropagacao [7]:

(8)

oL 0, rj#rj,c#rj,
= oL Lk %
Ohir; c, By T3 =Tk =715

Essas técnicas tornam as CNNs eficientes para reconhecimento de padroes em imagens [22].

3.4 Camadas Densas

Apos as etapas convolucionais e de pooling, os mapas de caracteristicas sdo dimensionados e
passados para camadas densas, cuja funcao é classificar. A combinacao dessas camadas permite
que a rede aprenda as caracteristicas, bordas e texturas até chegar a formas mais complexas [12].

3.5 Processo de Treinamento

A imagem que ¢é inserida na CNN é propagada pela rede, passando por convolugoes, ativagoes
e pooling, até gerar uma predi¢ao na saida para tal s@o necessérios algumas iteragoes.

e Calculo da Funcao de Perda: predicao de saida é comparada ao rétulo real por meio de
uma fungao de custo, como a Cross-Entropy Loss para classificagdo [7].

e Retropropagacao: a rede calcula os gradientes dos pesos em relacao a perda utilizando o
algoritmo de Backpropagation, combinado a regra da cadeia [17].

e Atualizagao dos Pesos: os pesos sao atualizados por meio de algoritmos de otimizagao,
como o Stochastic Gradient Descent (SGD), o Adam ou variantes [11].

e Regularizagao: técnicas como Dropout [18] e Batch Normalization [9] sdo frequentemente
aplicadas para prevenir overfitting e acelerar o treinamento.

4 Dados Experimentais

A base de dados utilizada é uma coletanea de audios disponivel online3, inicialmente manipu-
lada por Zanetakis et al. para estudos de Recuperagao de Informagao Musical [20] e amplamente
utilizada em pesquisas académicas [6]. Contém 1000 arquivos de dudio distribuidos igualmente
entre 10 estilos musicais: Blues, Classical, Country, Disco, Hip Hop, Jazz, Metal, Pop, Reggae e
Rock. Cada diretoério contém 100 musicas, algumas com versoes repetidas, como a "Rhapsody in

Blue"de George Gershwin, presente nos arquivos 44 e 48, totalizando 13 ocorréncias semelhantes
[19].

3https://github.com/marsyas/marsyas
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4.1 Organizagao de Dados

A organizagao dos dados seguiu trés etapas: extragao dos coeficientes aproximados da trans-
formada Wavelet, geracao de imagens (espectrogramas) e organizacao dos dados para treinamento
e teste da Rede Neural Convolucional. O método utilizado para garantir a proporcionalidade dos
dados para o treinamento foi o de manter a aleatoriedade na escolha dos arquivos para treinamento
e também para a previsao, uma vez que os dados utilizados no presente trabalho apresentam balan-
ceamento entre as classes [10], em que cada estilo musical possui a mesma quantidade de msicas.

5 Coeficientes e Espectrogramas

5.1 Geracgao dos Coeficientes

Os arquivos de audio foram convertidos de au para wav para compatibilidade com o codigo
desenvolvido, mantendo as propriedades originais. Os coeficientes aproximados foram extraidos
da série temporal de cada audio utilizando a Wavelet Haar [1]. Esta escolha permitiu capturar a
maior parte do sinal com coeficientes aproximados.

Dada a limitacao da base de dados, foram extraidos os coeficientes aproximados de ordens 1
(cAl), 2 (cA2) e 3 (cA3), resultando em 3.000 novas séries temporais.

5.2 Geragao dos Espectrogramas e Treinamento da CNN

Cada série temporal foi dividida em trés partes iguais para a geracao de imagens espectrogramas.
O algoritmo seguiu as etapas: 1) acessar a série temporal do coeficiente aproximado cA,; 2)
determinar o comprimento da série; 3) dividir a série em trés segmentos; 4) aplicar a transformada
Wavelet Continua (CWT); 5) repetir o processo para 3.000 séries, resultando em 9.000 novas
imagens para treinar a Rede Neural Convolucional. O método de escolha dos dados para a fase
de teste foi feito de forma aleatoria, garantindo a estocasticidade, em vez de escolher sempre as 10
primeiras imagens sequenciais de cada estilo para serem testadas. O treinamento da Rede Neural
Convolucional teve 75% das figuras utilizadas para treinamento e 25% para validagao para cada
grupo (estilo musical).

5.3 Principais resultados

Os resultados abaixo apresentam os valores de previsao de cada estilo musical de acordo com a
quantidade de imagens utilizadas no treinamento. Para cada conjunto de imagens as redes foram
treinadas 10 vezes com 1.000 épocas cada uma com uma taxa de aprendizagem de 0,01. Agrupadas
do seguinte modo: 30% (2.700 imagens), 70% (6.300 imagens) e 90% (8.100 imagens). Os valores
de acerto foram obtidos por meio da escolha aleatoria de 90 novas amostras, previstas 10 vezes,
para chegar aos valores médios das tabelas abaixo.

Tabela 1: Utilizados 30% dos dados. Estilo Country obteve média de acerto nas previsdes acima de 80%.

30% Blues Classical Country Disco Hiphop Jazz Metal Pop Reggae Rock

Média 0,67 0,56 0,82 045 057 0,79 0,44 0,63 0,76 0,36
Desvio ) 5e .93 0,06 0,13 0,11 0,07 0,15 0,10 0,06 0,16
padrao
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Tabela 2: Utilizados 70% dos dados. A média de acertos ficou acima de 80% para a maioria.

70% Blues Classical Country Disco Hiphop Jazz Metal Pop Reggae Rock

Média 0,82 0,84 0,89 067 0,83 0,83 048 067 0,91 0,71
E;;;’;‘; 0,09 0,18 0,04 012 0,10 0,08 011 010 0,05 0,12

Tabela 3: Utilizados 90% dos dados. Foram alcancadas algumas médias de acertos maiores iguais a 90%.

90% Blues Classical Country Disco Hiphop Jazz Metal Pop Reggae Rock

Média 0,83 0,91 0,90 0,0 0,82 0,88 0,57 061 0,94 0,66
E;;;’;‘; 0,11 0,09 0,05 0,08 0,07 0,06 012 012 0,06 0,09

6 Consideracoes Finais

Este trabalho abordou a classificagao de sinais de dudio em estilos musicais utilizando coefi-
cientes aproximados da transformada Wavelet Discreta. O método proposto gerou novas séries
temporais com apenas metade do sinal (15 s), aumentando o conjunto de imagens utilizadas no
treinamento da Rede Neural Convolucional, o percentual de acerto de alguns estilos foi maior igual
a 90%. Para trabalhos futuros, sugere-se treinar a mesma rede com diferentes tipos de Wavelets,
porém com a mesma quantidade de coeficientes aproximados a fim de identificar a Wavelet para
obter diferentes resultados.
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