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Resumo. Na era da computação quântica, a segurança da informação torna-se um desafio cres-
cente, uma vez que muitos algoritmos criptográficos tradicionais podem se tornar vulneráveis a
ataques quânticos. Diante disso, é essencial investigar novas abordagens para o desenvolvimento
de criptografia pós-quântica, explorando ferramentas matemáticas que possam garantir segurança
mesmo na presença de computadores quânticos. Uma abordagem muito promissora nesse campo é o
estudo de grafos associados a estruturas algébricas. Para cada grupo finito, por exemplo, é possível
relacioná-lo a diferentes classes de grafos. As propriedades estruturais desses grafos refletem a natu-
reza do grupo, oferecendo uma nova perspectiva para o desenvolvimento da teoria. Nosso objetivo
é explorar a interação entre teoria dos grafos e estruturas algébricas para esquemas criptográficos
baseado em grupos algébricos, capaz de oferecer resistência contra ataques quânticos.
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1 Introdução

A palavra "criptografia"encontra suas raízes no grego antigo, unindo "kryptós"(escondido) e
"gráphein"(escrever), o que já nos indica a arte de escrever de forma oculta. No universo da segu-
rança digital, a criptografia assume um papel central ao converter dados legíveis em um formato
cifrado. Sua robustez é fundamental para a proteção de dados, sendo o método primordial e indis-
pensável para prevenir o acesso indevido a informações em sistemas computacionais, bloqueando
sua leitura ou exploração mal-intencionada.

Um dos pilares da criptografia moderna é o sistema RSA. Nele, as chaves pública e privada são
definidas por pares de números naturais, (e, n) e (d, n), respectivamente. O número n é obtido pela
multiplicação de dois números primos. A segurança do RSA reside na dificuldade de se obter a chave
privada a partir da pública, o que equivale a encontrar os fatores primos do número n. Ao selecionar
cuidadosamente esses dois primos, essa fatoração se torna um problema computacionalmente árduo
[2]. Desde 1994, com o trabalho do matemático Peter Shor, que introduziu algoritmos quânticos
aplicáveis a problemas de fatoração de inteiros e logaritmos discretos [4], ficou evidente que o
advento dos computadores quânticos poderia potencialmente expor a vulnerabilidade do RSA.

Esquemas criptográficos que resistem a ataques quânticos são conhecidos como pós-quânticos.
Com o objetivo de acelerar a implementação desses esquemas, o Instituto Nacional de Padrões e
Tecnologia (NIST) iniciou um processo de padronização em [1]. Esse processo foca em primitivas
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essenciais para comunicação segura na Internet, incluindo assinaturas digitais e troca de chaves.
Este artigo propõe uma modificação de criptossistema simétrico baseado em grafos proposto por [3],
onde modificamos a estrutura algébrica visando fornecer confidencialidade de dados entre remetente
e destinatário em ambientes de comunicações seguras.

O texto está organizado em seções. Na Seção 2, exploramos o conceito de grafos direcionados e
estruturas algébricas, criando uma operação que forma um grupo abeliano. Na Seção 3, utilizamos
essas estruturas de grupo no grafo para desenvolver um sistema criptográfico simétrico. A Seção
4 apresenta uma análise detalhada do sistema criptográfico simétrico proposto. Por fim, na Seção
5, apresentamos as conclusões obtidas a partir deste estudo.

2 Estrutura Algébrica Proposta para Grafos
Esta seção apresenta uma estrutura algébrica proposta para grafos finitos, onde os grafos são

definidos por conjuntos de vértices e arestas direcionadas, e uma operação binária chamada ⊗ é
definida para combinar grafos. A operação ⊗ é definida com base em quatro tipos de arestas base,
representando diferentes direções de conexão entre os vértices. Em seguida, são demonstradas
propriedades fundamentais dessa operação, incluindo fechamento, associatividade, identidade e
inverso, para mostrar que o conjunto de grafos com a operação ⊗ formam um grupo.

Seja G = (V,E) um grafo finito e direcionado, com:

V (G) = {v1, v2, . . . , vn} e E(G) = {e1, e2, . . . , em} ∪ {e′1, e′2, . . . , e′m}. (1)

tal que ek = (vi, vj) e e′k = (vj , vi), onde i e j ∈ [1, n] e k ∈ [1,m]. Dizemos que um grafo
é direcionado quando cada aresta possui um sentido, para simplificação omitiremos o v, de modo
que e = (vi, vj) = (i, j). Podemos definir as direções como um conjunto base de arestas do tipo
[ek, e

′
k] = Bℓ, 0 ≤ ℓ ≤ 3, tal que:

B0 = [(∅, ∅), (∅, ∅)] sem aresta
B1 = [(i, j), (∅, ∅)] unidirecional
B2 = [(∅, ∅), (j, i)] unidirecional
B3 = [(i, j), (j, i)] bidirecional.

(2)

Figura 1: As arestas da base. Fonte: Dos autores.

Dados dois grafos simples direcionados G e H de ordem n, iremos definir uma operação binária
denotada por ⊗ definida em G e H, de modo que G = G ⊗ H é o grafo resultante de ordem n,
tal que |V (G)| = |V (G)| = |V (H)| = n, e para o conjunto de arestas E(G), a pertinência de uma
aresta base B em G é determinada usando as relações da Tabela 1.

Cada grafo é representado pelo conjunto de arestas da combinação das arestas bases da Figura
1, indicados na Tabela 1 a seguir.

Note que:

E(Gm) = [[e1, e
′
1], [e2, e

′
2], [e3, e

′
3], . . . , [em, e′m]] = [Ba1 , Ba2 , . . . , Bam ]. (3)
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Tabela 1: Relações entre as arestas bases B0, B1, B2 e B3 dos grafos G, G e H.
⊗ GB0 GB1 GB2 GB3

HB0
GB0

GB1
GB2

GB3

HB1
GB1

GB0
GB3

GB2

HB2 GB2 GB3 GB0 GB1

HB3
GB3

GB2
GB1

GB0

Aqui, ai ∈ {0, 1, 2, 3}, onde 0 ≤ i ≤ m. Na Figura 2, é indicado um exemplo de operação com dois
grafos.

Figura 2: Exemplo da operação entre dois grafos. Fonte: Dos autores.

Teorema 1: Seja Gn o conjunto de grafos finitos de ordem n. Junto com a operação ⊗ definida
na Tabela 1, ⟨Gn,⊗⟩ é um grupo.

Prova: Para provar que ⟨Gn,⊗⟩ é um grupo, a operação ⊗ deve satisfazer as seguintes propri-
edades:

• P.1 A operação ⊗ obedece à propriedade de fechamento sobre Gn.

• P.2 A operação ⊗ obedece à propriedade associativa sobre os elementos de Gn.

• P.3 Existe um elemento identidade, digamos GI ∈ Gn, tal que para cada grafo Gx ∈ Gn

satisfaz:

GI ⊗Gx = Gx ⊗GI = GI . (4)

• P.4 Para cada elemento Gx ∈ Gn, existe um elemento inverso G′
x ∈ Gn tal que:

Gx ⊗G′
x = G′

x ⊗Gx = GI . (5)

Teorema 2.1. A operação ⊗ obedece à propriedade de fechamento.

Demonstração. De acordo com a definição de ⊗, para quaisquer dois grafos Gx e Gy de alguma
ordem n, Gx⊗Gy também é um grafo de ordem n com V (Gx⊗Gy) = V (Gx) = V (Gy). Como Gn

consiste em todos os grafos de ordem n, Gx ⊗Gy ∈ Gn. Portanto, a propriedade de fechamento é
verdadeira.
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Teorema 2.2. A operação ⊗ obedece à propriedade associativa.

Para quaisquer três grafos Gx, Gy e Gz de ordem n, a seguinte condição é verdadeira:

(Gx ⊗Gy)⊗Gz = Gx ⊗ (Gy ⊗Gz). (6)

Demonstração. Para demonstrar essa igualdade para o conjunto de elementos em Gn, é crucial
considerar operações em todas as condições possíveis da Tabela 1, conforme evidenciado na Tabela
2. É importante notar que o número de permutações possíveis para testar a associatividade é de 64
possibilidades, porém, em nossa demonstração, consideramos apenas 8 casos, uma vez que, como
podemos observar na Tabela 1, as operações são comutativas.

Tabela 2: Resultados da propriedade associativa da operação ⊗.
Gx Gy Gz (Gx ⊗Gy)⊗Gz Gx ⊗ (Gy ⊗Gz)

B0 B0 B0 B0 B0

B0 B0 B1 B1 B1

B0 B0 B2 B2 B2

B0 B0 B3 B3 B3

B0 B1 B2 B3 B3

B0 B1 B3 B2 B2

B0 B2 B3 B1 B1

B1 B2 B3 B0 B0

Teorema 2.3. Existência do elemento identidade em Gn com relação à operação ⊗.

Demonstração. O grafo G∅, com V (G∅) = n e E(G∅) = {B0, B0, ..., B0}, é o elemento identidade
em relação à operação ⊗. Isso ocorre porque, para qualquer grafo Ga ∈ Gn:

Gx ⊗G∅ = G∅ ⊗Gx = Gx. (7)

Teorema 2.4. Existência do elemento inverso em Gn com relação à operação ⊗.

Demonstração. Um grafo G com n vértices é complementado ao grafo G, definido da seguinte
forma: V (G) = V (G), e ∈ E(G) ⇐⇒ e /∈ E(G). Em outras palavras, G contém exatamente as
arestas que não estão em G.

O grafo GKn , com V (GKn) = n e E(GKn) = {B3, B3, . . . , B3}, é o elemento utilizado como
unidade em relação à operação ⊗. Isso ocorre porque, para qualquer grafo Gx ∈ Gn:

Gx ⊗Gx = Gx ⊗Gx = GKn
. (8)

Logo, a propriedade acima é verdadeira para ⊗ sobre Gn. Portanto, pelas propriedades de-
monstradas nos Teoremas anteriores, temos que ⟨Gn,⊗⟩ é um grupo.

Teorema 2.5. ⟨Gn,⊗⟩ é abeliano.

Prova: Para provar a afirmação acima, é necessário mostrar que ⟨Gn,⊗⟩ é um grupo e ⊗
obedece à lei comutativa, como provado pela Tabela 1.
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Figura 3: Exemplo da operação grafo inverso, onde E(G) = [B1, B2, B1, B2, B1, B2, B3, B0] e
E(G) = [B2, B1, B2, B1, B2, B1, B0, B3]. Fonte: Dos autores.

3 Sistema Cripto-Simétrico Proposto Baseado em ⟨Gn,⊗⟩

Nesta seção, apresentamos o sistema cripto-simétrico proposto baseado em ⟨Gn,⊗⟩. A cripto-
grafia simétrica é um método de criptografia onde a mesma chave é usada tanto para criptografar
quanto para descriptografar uma mensagem. Isso significa que o remetente e o destinatário da men-
sagem compartilham a mesma chave secreta. Nas próximas seções vamos definir o nosso processo
criptográfico.

3.1 Selecionando o valor de n

No primeiro passo, a ordem do grafo é selecionada. Isso, por sua vez, define o conjunto ⟨Gn⟩ e
o grupo abeliano ⟨Gn,⊗⟩.

3.2 Selecionando a Chave Secreta Gs e G′
s

Um grafo de ⟨Gn⟩ é selecionado aleatoriamente como a chave de criptografia secreta, denotado
por Gs. Assume-se que o grafo Gs é compartilhado secretamente entre o remetente e o receptor,
seguindo as propriedades da chave simétrica. O receptor, ao conhecer o grafo Gs, pode facilmente
gerar o grafo inverso G′

s de Gs. O grafo nulo e o grafo completo de ordem n não são selecionados
como chave porque o grafo nulo é o elemento identidade e o grafo completo é o complemento do
nulo.

3.3 Mapeamento do Texto Plano para o Grafo de Texto Plano GP

Neste passo, o texto plano é convertido em um grafo de texto plano GP de ordem n. Existem
várias maneiras de gerar o grafo de texto plano. A abordagem mais simples deste processo é
demonstrada pelo Algoritmo 1. Neste processo, o texto plano é convertido em seu formato binário
equivalente. Suponha que o comprimento de P no formato binário seja nP . No segundo passo, a
sequência binária é dividida em blocos de n bits e atribuída a uma matriz n × n de baixo para
cima. Como nP ≤ n2, os bits restantes n2 − nP nas linhas superiores são preenchidos com zeros.
A matriz final é o grafo de texto plano de P . O processo reverso do Algoritmo 1 pode ser seguido
para gerar o texto plano P a partir de GP .
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Input: Texto plano P
Output: Grafo de texto plano GP

1. Converter P em sua string binária bin(P );
2. Deixar nP = comprimento de bin(P );
3. Dividir bin(P ) em blocos de comprimento n;
4. Criar uma matriz de adjacência de n× n;
5. Alocar blocos de n bits de bin(P ) da direita para a esquerda, na matriz de adjacência
de baixo para cima;

7. Preencher com zeros nas linhas superiores para tornar múltiplo de n2;
8. A matriz correspondente é o grafo de texto plano GP ;

3.4 Criptografia do Grafo de Texto Plano

O processo de criptografia é definido por:

GC = GP ⊗GK . (9)

onde GC é o grafo do texto cifrado. Em outras palavras, o grafo do texto cifrado é gerado aplicando
a operação ⊗ nos grafos GP e GK .

3.5 Descriptografia do Grafo do Texto Cifrado

Durante o processo de descriptografia, o grafo do texto plano original é gerado pela seguinte
operação:

GP = GC ⊗G′
s. (10)

Ou seja, a operação ⊗ é realizada no grafo do texto cifrado GC e no grafo da chave inversa G′
s para

produzir GP . O processo acima é demonstrado com um exemplo a seguir. Suponha que n = 4 e
o texto plano P = 202. Então, P = (11001010)2 em formato binário. A matriz de adjacência do
grafo de texto plano GP para o texto plano P é dada por:

GP =


0 0 0 0
0 0 0 0
1 1 0 0
1 0 1 0

 . (11)

onde, a 3ª e 4ª linhas contêm P na ordem de cima para baixo, e as duas linhas restantes (1ª e 2ª
linha) da matriz consistem em zeros preenchidos. A correção e a análise do sistema cripto proposto
são fornecidas.

4 Análise

Nesta seção, primeiro a correção do sistema cripto proposto é verificada. Depois, sua força
de segurança é analisada contra ataques de força bruta. Para verificar a correção do sistema
cripto proposto, é necessário mostrar que as operações usadas para os processos de criptografia e
descriptografia podem gerar com sucesso o texto plano a partir do texto cifrado.

Teorema 4.1. Para quaisquer grafos GP e Gs em Gn, se G′
s é o grafo inverso de Gs em Gn,

então:
GP = ((GP ⊗Gs)⊗G′

s)⊗GKn . (12)
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Demonstração.

((GP ⊗Gs)⊗G′
s)⊗GKn

= (GP ⊗ (Gs ⊗G′
s))⊗GKn

(P.1 ⊗)

= (GP ⊗GKn
)⊗GKn

(P.3 ⊗)

= G′
P ⊗GKn

= GP .

(13)

4.1 Resiliência Contra Ataque de Força Bruta

Considere GC e o valor de n. Sem informação adicional, são necessárias O(n2 · 2n2

) operações
para encontrar o valor do grafo chave Gs.

Prova: Sem informação adicional, o processo de criptoanálise deve tentar a abordagem de
força bruta para encontrar Gs. Para encontrar Gs usando força bruta, é necessário tentar todos os
Gi ∈ Gm para verificar se Gi ⊗GC resulta em um texto plano significativo. Dado n, tentar todas
as chaves envolve O(2n

2

) operações. Em segundo lugar, a operação ⊗ requer O(n2) operações.
Portanto, são necessárias no total O(n2 · 2n2

) operações para encontrar o grafo chave Gs. Para
um valor suficientemente grande de n, O(2n

2

) é computacionalmente difícil com um dispositivo de
computação padrão.

5 Considerações Finais
Neste trabalho, exploramos a interseção entre grafos e estruturas algébricas como uma aborda-

gem inovadora para aprimorar a segurança criptográfica na era da computação quântica. Através
do estudo detalhado dos grafos associados a grupos finitos, como os obtidos a partir das tabelas de
Cayley, identificamos que uma compreensão aprofundada dessas estruturas pode ser fundamental
para o desenvolvimento de algoritmos criptográficos robustos.

Propomos uma nova operação binária, denotada por ⊗, para combinar grafos direcionados, e
demonstramos que, com essa operação, o conjunto de todos os grafos de uma ordem fixa forma
um grupo. A utilização de grafos como representações de chaves e textos criptográficos apresenta
uma estrutura flexível e resistente, que pode ser adaptada para responder às ameaças emergentes
da computação quântica.
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