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Resumo. Na era da computagdo quantica, a seguranca da informacdo torna-se um desafio cres-
cente, uma vez que muitos algoritmos criptograficos tradicionais podem se tornar vulneraveis a
ataques quanticos. Diante disso, é essencial investigar novas abordagens para o desenvolvimento
de criptografia pés-quantica, explorando ferramentas matemaéticas que possam garantir seguranca
mesmo na presencga de computadores quanticos. Uma abordagem muito promissora nesse campo € o
estudo de grafos associados a estruturas algébricas. Para cada grupo finito, por exemplo, é possivel
relaciona-lo a diferentes classes de grafos. As propriedades estruturais desses grafos refletem a natu-
reza do grupo, oferecendo uma nova perspectiva para o desenvolvimento da teoria. Nosso objetivo
é explorar a interagdo entre teoria dos grafos e estruturas algébricas para esquemas criptograficos
baseado em grupos algébricos, capaz de oferecer resisténcia contra ataques quanticos.
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1 Introducao

A palavra "criptografia"encontra suas raizes no grego antigo, unindo "kryptos"(escondido) e
"graphein" (escrever), o que ja nos indica a arte de escrever de forma oculta. No universo da segu-
ranca digital, a criptografia assume um papel central ao converter dados legiveis em um formato
cifrado. Sua robustez é fundamental para a protegdo de dados, sendo o método primordial e indis-
pensavel para prevenir o acesso indevido a informagoes em sistemas computacionais, bloqueando
sua leitura ou exploracao mal-intencionada.

Um dos pilares da criptografia moderna ¢é o sistema RSA. Nele, as chaves piblica e privada sao
definidas por pares de nimeros naturais, (e,n) e (d,n), respectivamente. O ntumero n é obtido pela
multiplicacao de dois nimeros primos. A seguranca do RSA reside na dificuldade de se obter a chave
privada a partir da publica, o que equivale a encontrar os fatores primos do ntimero n. Ao selecionar
cuidadosamente esses dois primos, essa fatoragao se torna um problema computacionalmente arduo
[2]. Desde 1994, com o trabalho do matematico Peter Shor, que introduziu algoritmos quanticos
aplicaveis a problemas de fatoracdo de inteiros e logaritmos discretos [4], ficou evidente que o
advento dos computadores quanticos poderia potencialmente expor a vulnerabilidade do RSA.

Esquemas criptograficos que resistem a ataques quénticos sao conhecidos como pds-qudnticos.
Com o objetivo de acelerar a implementacao desses esquemas, o Instituto Nacional de Padroes e
Tecnologia (NIST) iniciou um processo de padronizagdo em [1]. Esse processo foca em primitivas
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essenciais para comunicacao segura na Internet, incluindo assinaturas digitais e troca de chaves.
Este artigo propoe uma modificacdo de criptossistema simétrico baseado em grafos proposto por [3],
onde modificamos a estrutura algébrica visando fornecer confidencialidade de dados entre remetente
e destinatario em ambientes de comunicagoes seguras.

O texto esta organizado em secoes. Na Secao 2, exploramos o conceito de grafos direcionados e
estruturas algébricas, criando uma operacao que forma um grupo abeliano. Na Secao 3, utilizamos
essas estruturas de grupo no grafo para desenvolver um sistema criptografico simétrico. A Segao
4 apresenta uma anélise detalhada do sistema criptografico simétrico proposto. Por fim, na Segao
5, apresentamos as conclusoes obtidas a partir deste estudo.

2 Estrutura Algébrica Proposta para Grafos

Esta secao apresenta uma estrutura algébrica proposta para grafos finitos, onde os grafos sao
definidos por conjuntos de vértices e arestas direcionadas, e uma operagao binaria chamada ® é
definida para combinar grafos. A operacao ® é definida com base em quatro tipos de arestas base,
representando diferentes diregoes de conexao entre os vértices. Em seguida, sao demonstradas
propriedades fundamentais dessa operagao, incluindo fechamento, associatividade, identidade e
inverso, para mostrar que o conjunto de grafos com a opera¢ao ® formam um grupo.

Seja G = (V, E') um grafo finito e direcionado, com:

V(G) = {v1,v2,...,v,} e E(G)={e1,ea,...,em}U{e],eh, ... e} (1)

tal que e, = (v;,v;) e €, = (v;,v;), onde i e j € [1,n] e k € [1,m]. Dizemos que um grafo
é direcionado quando cada aresta possui um sentido, para simplificagao omitiremos o v, de modo
que e = (v;,v;) = (¢,7). Podemos definir as diregdes como um conjunto base de arestas do tipo
ler, er,] = By, 0 < £ < 3, tal que:

By =1[(0,0),(0,0)] sem aresta

By =[(4,7),(0,0)] unidirecional o)
By =[(0,0),(4,4)] unidirecional

Bs =[(4,7), (j,i)]  bidirecional.

® OO o

Figura 1: As arestas da base. Fonte: Dos autores.

Dados dois grafos simples direcionados G e H de ordem n, iremos definir uma operagao binaria
denotada por ® definida em G e H, de modo que G = G ® H é o grafo resultante de ordem n,
tal que |V(G)| = |V(G)| = [V(H)| = n, e para o conjunto de arestas F(G), a pertinéncia de uma
aresta base B em G é determinada usando as relagoes da Tabela 1.

Cada grafo é representado pelo conjunto de arestas da combinagao das arestas bases da Figura
1, indicados na Tabela 1 a seguir.

Note que:

E(Gm) = [[617 6/1]7 [627 6/2]7 [637 6:/3}7 s [ema elmH = [Ba1 s Bayy ooy Bam]' (3)
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Tabela 1: Relagoes entre as arestas bases By, Bi, By e Bs dos grafos G,G e H.

® GBO GB1 GBz GBS
Hp, | G, | GB, | GB, | UB,s
Hp, | G, | B, | 9Bs | 9B,
Hp, | G, | GB, | OB, | UBs
Hp, | G, | UB, | 9B, | s,

Aqui, a; € {0,1,2,3}, onde 0 <7 < m. Na Figura 2, é indicado um exemplo de operagao com dois

grafos.
G H
v2)€—>(V3 (1) >
@
@—@ @

u3
@

E(G o= [[Cl ' C.‘li? [("'3-! szi: [("33 Cj%i' [("4! C:l]‘- 1("5! C:":}J {("63 C;S]] = [BQ! By, Ba, B3, By, B'ﬂ]v
E(H) = Hel ’ f.’-; ]7 [e?-s f.’.le'. [635 f.’.;!!'. If-'d, f.’.:l!'. !f-'3, 8;‘,] Ieﬁs 8:’;]] e [B] ] B1 2 B'l'. B:j, BQs BU]:
E(G ® H) = [[e1, 1), [e2, €3], [e3, 3], [ea, eq], [es, €5], [es, ] = [Bs, Bs, Bo, B, Bz, Ba).

Figura 2: Exemplo da operagao entre dois grafos. Fonte: Dos autores.

Teorema 1: Seja G™ o conjunto de grafos finitos de ordem n. Junto com a operagdo ® definida
na Tabela 1, (G™, ®) é um grupo.

Prova: Para provar que (G™, ®) é um grupo, a operagao ® deve satisfazer as seguintes propri-
edades:

e P.1 A operacao ® obedece a propriedade de fechamento sobre G™.
e P.2 A operacao ® obedece a propriedade associativa sobre os elementos de G™.
e P.3 Existe um elemento identidade, digamos G; € G™, tal que para cada grafo G, € G"
satisfaz:
GG, =G, G =Gy. (4)

e P.4 Para cada elemento G, € G", existe um elemento inverso G, € G™ tal que:

G.®G =G G, =Gy. (5)
Teorema 2.1. A operaciao ® obedece o propriedade de fechamento.

Demonstragdo. De acordo com a definigao de ®, para quaisquer dois grafos G, e G, de alguma
ordem n, G, ® G, também é um grafo de ordem n com V(G, ® G,) = V(G;) = V(G,). Como G"
consiste em todos os grafos de ordem n, G, ® G, € G™. Portanto, a propriedade de fechamento é
verdadeira. O
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Teorema 2.2. A operag¢ao ® obedece o propriedade associativa.

Para quaisquer trés grafos G, Gy e G, de ordem n, a seguinte condicao é verdadeira:

(G2 ®Gy)®G, =G, 2 (Gy®G,). (6)

Demonstracao. Para demonstrar essa igualdade para o conjunto de elementos em G", é crucial
considerar operagoes em todas as condigoes possiveis da Tabela 1, conforme evidenciado na Tabela
2. E importante notar que o nimero de permutacoes possiveis para testar a associatividade & de 64
possibilidades, porém, em nossa demonstragao, consideramos apenas 8 casos, uma vez que, COmo
podemos observar na Tabela 1, as operagoes sao comutativas.

Tabela 2: Resultados da propriedade associativa da operagao ®.

Go | Gy | G. | (Ge®Gy)RG. | Go®(Gy®G2)
Bo | Bo | Bo Bo Bo
Bo Bo Bl Bl Bl
Bo | Bo | Bs B B
Bo | Bo | Bs B3 B3
Bo | B1 | B2 B3 B3
Bo Bl B3 BQ BZ
Bo BQ B3 Bl Bl
By | B2 | B3 Bo Bo

Teorema 2.3. FEzisténcia do elemento identidade em G™ com relacdo G operagao .
Demonstragao. O grafo Gy, com V(Gy) = n e E(Gy) = {Bo, Bo, ..., Bo}, & o elemento identidade
em relagdo & operacdo ®. Isso ocorre porque, para qualquer grafo G, € G™:
Gw@)G@:G@@Gx:GI. (7)
O

Teorema 2.4. Ezxisténcia do elemento inverso em G™ com relagao a operacao .

Demonstragcdo. Um grafo G' com n vértices é complementado ao grafo G, definido da seguinte

forma: V(G) = V(G), e € E(G) <= e ¢ E(G). Em outras palavras, G contém exatamente as
arestas que nao estao em G.

O grafo Gk, , com V(Gg,) = n e E(Gk,) = {Bs,Bs,...,Bs}, é o elemento utilizado como
unidade em relagao & operacao ®. Isso ocorre porque, para qualquer grafo G, € G™:

G, ®G, =G, G, =Gk, . (8)
]

Logo, a propriedade acima é verdadeira para ® sobre G™. Portanto, pelas propriedades de-
monstradas nos Teoremas anteriores, temos que (G™, ®) é um grupo.

Teorema 2.5. (G™,®) € abeliano.

Prova: Para provar a afirmagio acima, ¢ necessario mostrar que (G™,®) é um grupo e ®
obedece & lei comutativa, como provado pela Tabela 1.
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G 4 Y
(uz @ (w2 1(_).@

i (1) e—>(w9)
Figura 3: Exemplo da operacdo grafo inverso, onde E(G) = [By, Ba, By, Ba, B1, Ba, B3, Bo| e

E(G) = [Ba, By, B, By, Bs, By, By, Bs]. Fonte: Dos autores.

3 Sistema Cripto-Simétrico Proposto Baseado em (G", ®)

Nesta se¢ao, apresentamos o sistema cripto-simétrico proposto baseado em (G™, ®). A cripto-
grafia simétrica € um método de criptografia onde a mesma chave é usada tanto para criptografar
quanto para descriptografar uma mensagem. Isso significa que o remetente e o destinatario da men-
sagem compartilham a mesma chave secreta. Nas proximas secoes vamos definir o nosso processo
criptografico.

3.1 Selecionando o valor de n

No primeiro passo, a ordem do grafo é selecionada. Isso, por sua vez, define o conjunto (G™) e
o grupo abeliano (G™, ®).

3.2 Selecionando a Chave Secreta G, e G,

Um grafo de (G™) é selecionado aleatoriamente como a chave de criptografia secreta, denotado
por G4. Assume-se que o grafo G é compartilhado secretamente entre o remetente e o receptor,
seguindo as propriedades da chave simétrica. O receptor, ao conhecer o grafo Gy, pode facilmente
gerar o grafo inverso G, de G. O grafo nulo e o grafo completo de ordem n nao sao selecionados
como chave porque o grafo nulo é o elemento identidade e o grafo completo é o complemento do
nulo.

3.3 Mapeamento do Texto Plano para o Grafo de Texto Plano Gp

Neste passo, o texto plano é convertido em um grafo de texto plano Gp de ordem n. Existem
véarias maneiras de gerar o grafo de texto plano. A abordagem mais simples deste processo é
demonstrada pelo Algoritmo 1. Neste processo, o texto plano é convertido em seu formato binério
equivalente. Suponha que o comprimento de P no formato binério seja np. No segundo passo, a
sequéncia binaria é dividida em blocos de n bits e atribuida a uma matriz n X n de baixo para
cima. Como np < n?, os bits restantes n? — np nas linhas superiores sdo preenchidos com zeros.
A matriz final é o grafo de texto plano de P. O processo reverso do Algoritmo 1 pode ser seguido
para gerar o texto plano P a partir de Gp.
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Input: Texto plano P
Output: Grafo de texto plano Gp

1. Converter P em sua string binaria bin(P);

2. Deixar np = comprimento de bin(P);

3. Dividir bin(P) em blocos de comprimento n;

4. Criar uma matriz de adjacéncia de n X n;

5. Alocar blocos de n bits de bin(P) da direita para a esquerda, na matriz de adjacéncia
de baixo para cima;

7. Preencher com zeros nas linhas superiores para tornar mialtiplo de n?;

8. A matriz correspondente é o grafo de texto plano Gp;

3.4 Criptografia do Grafo de Texto Plano

O processo de criptografia é definido por:
Ge=GpRGgk. (9)

onde G¢ é o grafo do texto cifrado. Em outras palavras, o grafo do texto cifrado é gerado aplicando
a operagao ® nos grafos Gp e Gg.

3.5 Descriptografia do Grafo do Texto Cifrado

Durante o processo de descriptografia, o grafo do texto plano original é gerado pela seguinte
operacao:

Gp=GeaGl (10)

Ou seja, a operagdo ® é realizada no grafo do texto cifrado G¢ e no grafo da chave inversa G, para
produzir Gp. O processo acima é demonstrado com um exemplo a seguir. Suponha que n =4 e
o texto plano P = 202. Entao, P = (11001010)2 em formato binario. A matriz de adjacéncia do
grafo de texto plano G p para o texto plano P é dada por:

Gp = (11)

_= =0 O
o R OO
_— o O O
OO OO

onde, a 3% e 4? linhas contém P na ordem de cima para baixo, e as duas linhas restantes (1% e 2%
linha) da matriz consistem em zeros preenchidos. A corregdo e a anélise do sistema cripto proposto
sao fornecidas.

4 Andlise

Nesta secao, primeiro a corregao do sistema cripto proposto é verificada. Depois, sua forga
de seguranca é analisada contra ataques de forca bruta. Para verificar a correcdo do sistema
cripto proposto, é necessario mostrar que as operagoes usadas para os processos de criptografia e
descriptografia podem gerar com sucesso o texto plano a partir do texto cifrado.

Teorema 4.1. Para quaisquer grafos Gp e G5 em G™, se G, € o grafo inverso de G5 em G™,
entao:

Gp=(Gp®G,)®G,) ®GCk,. (12)

DOI: 10.5540/03.2026.012.01.0286 010286-6 © 2026 SBMAC


http://dx.doi.org/10.5540/03.2026.012.01.0286

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

Demonstragao.

(Gp®Gs)®G,) ® Gk, = (Gp® (Gs ® GY)) @Gk, (P.1®)
= (Gp®Gk,)®Gk, (P3®) (13)
— G\ ® Gk, = Gp.

4.1 Resiliéncia Contra Ataque de Forca Bruta

. . ~ . ~ - 2 -
Considere G¢ e o valor de n. Sem informacio adicional, sdo necessarias O(n? - 2"") operacoes
para encontrar o valor do grafo chave G.

Prova: Sem informacgao adicional, o processo de criptoanélise deve tentar a abordagem de
forga bruta para encontrar Gs. Para encontrar G5 usando forga bruta, é necessario tentar todos os
G; € G, para verificar se G; ® G¢ resulta em um texto plano significativo. Dado n, tentar todas
as chaves envolve 0(2"2) operagoes. Em segundo lugar, a operagio ® requer O(n?) operagdes.
Portanto, sdo necessarias no total O(n? - 2"2) operagoes para encontrar o grafo chave G4. Para
um valor suficientemente grande de n, 0(2"2) é computacionalmente dificil com um dispositivo de
computagao padrao.

5 Consideracgoes Finais

Neste trabalho, exploramos a intersecao entre grafos e estruturas algébricas como uma aborda-
gem inovadora para aprimorar a seguranca criptografica na era da computagdao quantica. Através
do estudo detalhado dos grafos associados a grupos finitos, como os obtidos a partir das tabelas de
Cayley, identificamos que uma compreensao aprofundada dessas estruturas pode ser fundamental
para o desenvolvimento de algoritmos criptograficos robustos.

Propomos uma nova operacao binéria, denotada por ®, para combinar grafos direcionados, e
demonstramos que, com essa operacao, o conjunto de todos os grafos de uma ordem fixa forma
um grupo. A utilizacao de grafos como representagoes de chaves e textos criptograficos apresenta
uma estrutura flexivel e resistente, que pode ser adaptada para responder as ameagas emergentes
da computagao quéntica.
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