
Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Encoding and Decoding Process of Data with SageMath

John H. Castillo1, Juan F. Mafla2, Catalina M. Rúa-Alvarez3

Departamento de Matemáticas y Estadística, Universidad de Nariño, Pasto, Colombia

Abstract. In this work, we address the transmission of digital data in a noisy environment and
highlight the importance of coding theory to ensure the integrity of the information. The study
focuses on the decoding process using syndromes for the family of binary linear codes in general.
The main goal is to demonstrate the simulation of data encoding, transmission, and decoding using
SageMath. In this research, the techniques used in [7] are extended to perform simulations involving
texts written with ASCII characters and images in black and white; we point out that these ideas
can be used to process images in other formats. In this talk, we will present the mathematical
background and give several simulations of the encoding and decoding process.

Keywords. Binary Linear Code, SageMath, Text, Image

1 Introduction

Coding theory is a branch of applied mathematics that has evolved to be important in several
areas of communications. Its principal objective is to guarantee the integrity of the data trans-
mitted through a communication channel that can be affected by noise. To achieve this, coding
and decoding techniques are used that allow errors caused by noise to be detected and, in some
cases, corrected. This discipline utilizes various mathematical concepts from different areas of
mathematics, including: linear algebra, probability, combinatorics, ring theory and group theory,
among others. These elements are essential for the design and analysis of efficient codes that en-
sure reliable communication, see [2, 4, 5]. Coding theory focuses on communication through noisy
channels and the ability to recover information from messages affected by errors. In this context,
corrupted messages are those that have undergone alterations during transmission. A fundamental
approach in this theory is to understand how to design systems capable of detecting and correcting
these errors to ensure reliable and accurate communication.

The process of transmitting information through noisy channels can be visualized as a journey
from an origin point (transmitter) to a destination (receiver). During this journey, the information
encounters various obstacles, such as electromagnetic interference or atmospheric noise, which may
introduce errors into the original message. Coding theory is concerned with developing methods
and techniques to mitigate the effects of these obstacles and ensure that the information reaches
its final destination in an intelligible manner.

Firstly, we recall some definitions and notations. Let F2 = {0, 1} be the field with 2 elements,
as usual the operations of addition and product are made modulo 2. For n ∈ Z+, let Fn

2 denotes the
vector space of all n-tuples over F2. Any non-empty set C of Fn

2 is called a binary block code. Each
element (a1, a2, . . . , an) (or simply a1a2 . . . an) in C is a codeword, and if C contains M elements,
then it is said that C has length n and size M , or simply that C is an (n,M)-code.

1jhcastillo@udenar.edu.co
2juanmafla@udenar.edu.co
3catalina.rua@udenar.edu.co

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, v. 12, n. 1, 2026.

Trabalho apresentado no XLIV CNMAC, Fundação Getulio Vargas - Rio de Janeiro - RJ, 2025.

DOI: 10.5540/03.2026.012.01.0279 010279-1 © 2026 SBMAC

http://dx.doi.org/10.5540/03.2026.012.01.0279

2

A binary [n, k]-linear code C is a k-dimensional subspace of Fn
2 . The Hamming distance, d(x,y),

between two codewords x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ C ⊆ Fn
2 is the number of entries where

they differ, or equivalently, d(x,y) = |{i : xi ̸= yi, 1 ≤ i ≤ n}|. For x ∈ Fn
2 , the Hamming weight of

x is wt(x) = d(x,0), i.e., wt(x) is the number of non-zero coordinates in x. The minimum distance
d(C) = d of a linear code C is defined as the minimum weight among all non-zero codewords, thus
we called it a binary [n, k, d]-linear code.

Given a code C the minimum distance decoding process is as described below. Suppose that
codewords from a code C are sent over a communication channel. If a word x is received, it will
be decode x to cx ∈ C if d(x, cx) = minc∈C d(x, c). If two or more codewords of C satisfy the last
expression, the complete decoding rule arbitrarily selects one of them to be the most likely word
sent, while the incomplete decoding rule requests for a retransmission.

Let t be a positive integer. We recall, that a code C is a t-error-detecting code if, whenever a
codeword incurs at least one but at most t errors, the resulting word is not a codeword. A code C
is an exactly t-error-detecting code if it is t-error-detecting but not (t+ 1)-error-detecting. Also, a
code C is a t-error-correcting code if minimum distance decoding is able to correct t or fewer errors,
assuming that the incomplete decoding rule is used. A code C is an exactly t-error-correcting code
if it is t-error-correcting but not (t + 1)-error-correcting. The next result gives the capacity of
detection and correction of a code C in terms of its minimum distance d(C), see theorems 2.5.6 and
2.5.10 in [5].

Theorem 1.1. Let C be a code. Then d(C) = d if and only if C is an exactly (d−1)-error-detecting
code and C is an exactly

⌊
d−1
2

⌋
-error-correcting code.

A generator matrix for an [n, k]-linear code C is any k × n matrix G whose rows form a basis
for C. So the code C can be seen as

C = {xG : x ∈ Fk
2}. (1)

Thus for each codeword c ∈ C, there exists a x ∈ Fk
2 , such that c = xG = x1v1+x2v2+ · · ·+xkvk,

where B = {v1,v2, . . . ,vk} is a base of the vector space C. Note that vi are the rows of G. Hence,
we can perform the encoding process as follows: given a piece of information represented by a
vector x = (x1, x2, . . . , xk) it is encoded as Enc(x) = xG.

Also, as an [n, k]-binary linear code C is a subspace of a vector space, it is the kernel of some
linear transformation. In particular, there is an (n− k)×n matrix H, called a parity-check matrix
for C, such that

C = {v ∈ Fn
2 : vHT = 0}. (2)

For the decoding process, the parity-check matrix plays a crucial role. Take C an [n, k]-binary linear
code with parity-check matrix H. For u ∈ Fn

2 the syndrome of u ∈ Fn
2 , is defined by syn(u) = uHT

and the set u+ C = {u+ c : c ∈ C} is a coset of C. A coset leader of u+ C is any vector in it with
the minimum Hamming weight and the weight of the coset is the Hamming weight of any of its
coset leaders. By (2), the code C consists of all vectors whose syndrome equals 0. As H has rank
n− k, every vector in Fn−k

2 is a syndrome. Also, by [4, Theorem 1.11.5], two vectors belong to the
same coset if and only if they have the same syndrome.

Suppose a message is represented by a codeword and it is sent over a communication channel.
Assume, that a vector y is received. Since in nearest neighbor decoding we seek a vector e of
smallest weight such that y − e ∈ C, nearest neighbor decoding is equivalent to finding a coset
leader e of y + C. The Syndrome Decoding Algorithm can be devised as follows. We begin with a
fixed parity-check matrix H of C.

1. For each syndrome s ∈ Fn−k
2 , choose a coset leader es such that syn(es) = s. Create a table

of syndromes, pairing each syndrome s with its respective coset leader es.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

DOI: 10.5540/03.2026.012.01.0279 010279-2 © 2026 SBMAC

http://dx.doi.org/10.5540/03.2026.012.01.0279

3

2. After receiving a vector y, compute its syndrome syn(y) = yHT = s.

3. y is then decoded as the codeword y − es, where es is a coset leader of y + C.

Therefore, the decoding process can be seen as a function from Fn
2 in Fk

2 given by Dec(y) = y−es.
Unfortunately, this function depends on the coset leader es taken during the process, actually a
coset can have several coset leaders. In fact, from Theorem 1.1, it can be proved that every coset
of weight at most ⌊(d− 1)/2⌋ has a unique coset leader.

Example 1.1. Consider the [5, 2, 3]-binary linear code C = {00000, 11100, 01111, 10011}. A parity-
check matrix of C is

H =

0 1 1 0 0
1 1 0 1 0
1 1 0 0 1

 ,

and its table of syndromes is given in Table 1.

Table 1: Syndromes of L.
Syndrome Coset leader

000 00000
011 10000
111 01000
100 00100

Syndrome Coset leader
010 00010
001 00001
110 00110
101 01010

Suppose that the codeword c = 01111 was sent and that the received vector was x = 01011.
Note that x /∈ C and syn(x) = 100. Since, x has the same syndrome of 00100, it is decoded as
c = 01011 − 00100 = 01111, the real sent word. Note that in this instance just one error was
introduced during the transmission. In the other hand, assume that v = 10110 is received, again
note that this is not a codeword. Then syn(v) = vHT = (101). From the above, v has the same
syndrome of 01010. But, the coset v+C has other coset leader 00101. Therefore, v will be decoded
either as 11100 or 10011. Of course, just one of them must be a corrected option. This happens,
because C can correct just 1 error.

Consequently, the functions Enc and Dec can be used to simulate the encoding and decoding
processes for a given binary linear code. The only requirement is to transform the information into
binary vectors, which will be transmitted through a noisy channel. In the next section, we will
demonstrate how these processes can be carried out using SageMath.

2 Transmission of Data with Coding Theory
We thoroughly explore the process of data transmission through a noisy channel using SageMath.

With the aid of concrete examples, we provide a practical visualization of how text data and image
are transmitted and received across a channel subject to interference and errors. The development
of this section is based on the ideas described in [7], which presents coding theory and provides
insight into the simulation processes of encoding and decoding of text strings written with up to
64 characters. The main novelty of this research is that we extend the procedures done in [7] for
text written with ASCII symbols (up to 256 characters) and images in black and white. In our
research, we focuses on utilizing these tools to perform simulations related to coding theory. With
the assistance of SageMath, it is possible to explore and experiment with different parameters,
allowing for a better understanding of the functionality and effectiveness of error-correcting codes
in practical scenarios.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

DOI: 10.5540/03.2026.012.01.0279 010279-3 © 2026 SBMAC

http://dx.doi.org/10.5540/03.2026.012.01.0279

4

SageMath offers a variety of functions for coding theory, data transmission, and decoding, fa-
cilitating the implementation and simulation of various applications within mathematics. Some of
these functions include tools for working with binary linear codes. To access these functions,
the command LinearCode() is used, which allows working with various linear codes, includ-
ing their generation. Additionally, it enables the determination of the minimum distance of a
code, which helps to obtain the error detection and correction capabilities of a given code. In
SageMath, the encoding and decoding functions, Enc and Dec, can be implemented using the
encode() and decode to message() commands, respectively. The channel is generated through
the channels.StaticErrorRateChannel class, which enables the simulation of a channel intro-
ducing either static errors or randomly selected errors within a specified range of number errors.
Moreover, codewords can be transmitted through the constructed channel using the transmit()
method.

2.1 Text

To work with text data, it is necessary to define and represent the data as binary vectors. To
do this, the ASCII code (an acronym for American Standard Code for Information Interchange)
will be used. This code was created in 1963 by the American National Standards Institute (ANSI)
after reorganizing and expanding the set of symbols and characters previously used in telegraphy
by the Bell telephone company. Initially, it included only uppercase letters and numbers, but in
1967, lowercase letters and some control characters were added, forming what is now known as
US-ASCII, which consists of characters ranging from 0 to 127. This set of 128 characters was
published as a standard in 1967 and contained everything necessary for writing in English. In
1981, IBM introduced an 8-bit extension of the ASCII code, known as “code page 437”. In this
version, some obsolete control characters were replaced with graphic characters. Additionally, 128
new characters were added, including symbols, additional graphic signs, and Latin letters necessary
for writing in other languages, such as French, Spanish and Portuguese. As a result, the ASCII
code was expanded to a total of 256 characters, see [1].

Each element in the list will be represented by an element of F8
2, corresponding to its index

digit, which ranges from 0 to 255. For instance, the letter "b" has an index of 98, and therefore,
its binary representation is “01100010”. We emphasize that with this approach, we move from
encoding text string written with up to 64 characters made in [7] to a total of 256 characters.

Example 2.1. We will simulate the process of coding and decoding for a text with a [15, 8, 3]-
binary linear code, so by Theorem 1.1 this code can exactly correct 1-error. Thus, if we transmit
the message “El español y el portugués son idiomas que provienen del latín”, we obtain the results
given in Figure 1. It can be observed that the original message remained unchanged when a single
error was introduced, which was the expected outcome. However, when two or more errors are
introduced, the code is unable to correct them, resulting in alterations to the message, making it
impossible to identify the original text. Nevertheless, it is noteworthy that the output message
with two errors retains some characters in the same positions as the original text.

Figure 1: Simulation of coding and decoding process of a text with SageMath. Source: Authors.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

DOI: 10.5540/03.2026.012.01.0279 010279-4 © 2026 SBMAC

http://dx.doi.org/10.5540/03.2026.012.01.0279

5

Now, for each number of errors introduced in a codeword, we calculate the number of different
characters between the original message and the received one, and we use this value to calculate
the error percentage. To carry out this calculation, a seed is set to control the initialization of
random values, repeating the process 10 times to obtain the average error rate. In Table 2, we show
the output obtained from this simulation. It can be observed that for 1-error in the 10 simulations
the message received is always the transmitted one, note that in this case the average error rate is
0%, in the other cases this average is increasing as expected.

Table 2: Average error percentage.
Number of errors

1 2 3 4 5
Average error rate 0% 59.18% 87.87% 98.36% 100%

2.2 Images
Image analysis and processing have evolved over time, and in recent decades, they have be-

come part of everyday practice thanks to technological advancements. Although the mathematical
foundations for these tasks have existed for a long time, only with the development of sufficiently
advanced software has it been possible to perform the intensive computations required for noise
reduction, edge detection, segmentation, and other image analysis, see [3].

A digital image can be understood as a two-dimensional function, denoted as f(x, y), where x
and y represent the spatial coordinates of the image, and f indicates the brightness intensity at
each coordinate, see [3, p. 65]. The smallest element of an image is the pixel, which stores a value
that reflects the intensity of light or color at a specific point in the image. Thus, each pixel is
associated to a position (x, y), and its value f(x, y) determines the visual appearance of the image
at that point. Moreover, a digital image can be represented as an M ×N matrix of pixels, where
M and N are the quantities of vertical and horizontal pixels in the image, respectively.

The black and white image format uses only two tones: black and white. In this format, each
pixel is represented by a binary value, where 0 denotes black and 1 corresponds to white, see for
instance Figure 2. This approach further simplifies the image structure, as it requires only 1 bit
per pixel to store the information. Black and white images are ideal for applications that prioritize
simplicity and the clarity of shapes or contours.

(a) Image. (b) Binary representation.

Figure 2: Black and white image and its binary representation. Source: [6].

Example 2.2. Following the ideas given previously, we reproduce the encoding and decoding
process for Figure 2a with a binary code C1 with parameters [12, 6, 3]. Since the code has minimum

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

DOI: 10.5540/03.2026.012.01.0279 010279-5 © 2026 SBMAC

http://dx.doi.org/10.5540/03.2026.012.01.0279

6

distance equals 3, it is only capable of correcting a single error. When two or more errors are
introduced, the images exhibit increasingly noticeable changes in their content, see Figure 3.

(a) Image with 2 errors. (b) Image with 3 errors.

Figure 3: Simulations with a [12, 6, 3]-linear code. Source: Authors.

Also note that we can use a code with a greater minimum distance to be able to correct more
errors. For instance, if we use a [15, 4, 8]-linear code C2, we get the same image when the number
of errors introduced in the transmitted images is less or equal than 3. In this instance, the result
image will be different when the number of errors is greater than 3, see Figure 4.

(a) Image with 4 errors. (b) Image with 5 errors.

Figure 4: Simulations with a [15, 4, 8]-linear code. Source: Authors.

This procedure can be extended to work with images in gray scale where the intensity of tones
varies from 0 (black) to 255 (white). In this case, since each tone of gray is represented by an
integer it is converted to its corresponding binary representation with 8 digits. For example,
neutral gray, which has a value of 160, is represented in binary form as 10100000. With the
binary representation of each pixel, the idea used for transmission of black and white images can
be applied. Similarly, this approach can be extended to the transmission of color images in RGB
format, where each pixel consists of three intensity values, between 0 and 255, for the red, green,
and blue components, respectively.

To avoid a visual comparison of similarity between images, the average error rate calculated in
the text transmission, see Table 2, can also be extended to this case.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

DOI: 10.5540/03.2026.012.01.0279 010279-6 © 2026 SBMAC

http://dx.doi.org/10.5540/03.2026.012.01.0279

7

3 Discussion
This talk highlights the use of the family of binary linear codes to simulate encoding and

decoding processes with the assistance of the computational algebra system SageMath. The use
of SageMath as a simulation tool enabled a practical exploration of the underlying theoretical
principles, facilitating the understanding and application of key concepts such as error correction
capability, error detection capability, and syndrome decoding, among others. Through the con-
ducted simulations, a clear representation of the encoding, transmission, and decoding processes
was achieved, reinforcing both the theoretical value of error-correcting codes and their applicability
in real-world contexts. One of the main contributions of this work is the adaptation of the methods
used in [7] to encode and decode texts containing any of the 256 ASCII characters, rather than
the 64 characters proposed in [7]. We point out that, in the talk we will show that this can be
done with grayscale and color images. Nevertheless, the results obtained also indicate the necessity
of employing codes with improved error detection and correction capabilities in future research,
particularly those with greater minimum distance. Moreover, the adaptation of these techniques
to various data types, such as text and images, demonstrates that the principles of coding theory
are broadly applicable, provided that appropriate adjustments are made for the specific character-
istics of the data formats used. These findings underscore the importance of further exploration
and optimization of these methodologies for their implementation in broader and potentially more
complex scenarios.

Acknowledgements
This work was partially supported by Vicerrectoría de Investigaciones e Interacción Social at

Universidad de Nariño.

References
[1] ASCII table. Available in: https://theasciicode.com.ar/. 2024.

[2] J. H. Castillo, J. J. López, and H. M. Ruiz. Introducción a la teoría de códigos correc-
tores de errores. Pasto, COL: Editorial Universidad de Nariño, 2025. isbn: 978-628-7771-
19-2.

[3] R. C. Gonzalez and R. E. Woods. Digital Image Processing. 4th. ed. Pearson Education,
2018. isbn: 978-1-292-22304-9.

[4] W. C. Huffman and V. Pless. Fundamentals of error-correcting codes. Cambridge, UK:
Cambridge University Press, 2010. isbn: 978-0-521-78280-7.

[5] S. Ling and C. Xing. Coding Theory: A First Course. New York: Cambridge University
Press, 2004. isbn: 978-0-521-82191-9.

[6] PNGWing. Free PNG. https://www.pngwing.com/es/free-png-bbhbi. Last accessed:
November 26, 2024. Publication date not specified.

[7] T. D. Timur, D. Adzkiya, and Soleha. “Simulations of linear and Hamming codes using Sage-
Math”. In: Journal of Physics: Conference Series, 974(1) (2018). doi: 10.1088/1742-
6596/974/1/012064.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

DOI: 10.5540/03.2026.012.01.0279 010279-7 © 2026 SBMAC

http://dx.doi.org/10.5540/03.2026.012.01.0279

