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Minimalidade da Máquina de Adição Bilateral
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Resumo. Neste trabalho, apresentaremos a construção de uma classe estendida de máquinas
de adição e demonstraremos que tais construções representam exemplos de sistemas dinâmicos
minimais.
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1 Introdução
Sistemas dinâmicos minimais representam exemplos paradigmáticos de comportamentos dinâ-

micos não triviais, mas estruturalmente simples. Eles aparecem em contextos como a teoria das
sequências de Toeplitz em dinâmica simbólica, e desempenham um papel fundamental na teoria
ergódica, especialmente no estudo de sistemas unicamente ergódicos [4]. Além disso, a sua ca-
pacidade de gerar dinâmicas densas e recorrentes sem periodicidade é uma ferramenta poderosa
para descrever e compreender fenômenos com padrões quase-periódicos. Por exemplo, eles aju-
dam na modelagem e codificação simbólica de sistemas físicos e matemáticos complexos como os
quasicristais e azulejos de Penrose [2].

Em [3], os autores apresentam a estrutura de uma dinâmica simbólica estendida denominada
Espaço Zip. Essa estrutura expande a dinâmica simbólica clássica (Shifts bilaterais) com o objetivo
de estudar e codificar sistemas dinâmicos não inversíveis, especialmente aqueles com comportamen-
tos caóticos. Esse tipo de estrutura simbólica baseia-se em dois conjuntos de símbolos e pode ser
aplicado na modelagem de sistemas naturais que exibem transições entre diferentes fases.

Neste trabalho, estudamos as máquinas de adição α-ádicas unilaterais, que são exemplos de
sistemas minimais infinitos [1], com o objetivo de estender e construir uma máquina de adição
bilateral, assumindo algumas particularidades. Para isso, utilizamos conceitos da teoria do espaços
Zip.

A construção de uma máquina de adição bilateral, conforme proposta neste trabalho, não
apenas fornece um novo exemplo de dinâmica simbólica minimal, mas também estabelece as bases
para um estudo futuro no qual pretende-se demonstrar que tal máquina bilateral caracteriza uma
dinâmica em um espaço simbólico estendido que não é do tipo Zip-Shift. De fato, a existência de
partições adequadas para sistemas não inversíveis pode levar à sua conjugação ou semiconjugação
topológica com mapas Zip-Shift, possibilitando o estudo de dinâmicas complexas e caóticas por
meio de representações simbólicas. No entanto, muitos sistemas dinâmicos não se enquadram na
classe daqueles que podem ser modelados efetivamente por meio dos espaços Zip-Shift. Nesse
contexto, a construção e o estudo de mapas que não são Zip-Shift tornam-se significativos.

Inicialmente, introduziremos a máquina de adição unilateral e algumas de suas propriedades.
Em seguida, abordaremos os fundamentos necessários da teoria de espaços Zip. Por fim, definiremos
a máquina de adição bilateral e provaremos sua minimalidade.
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2 Máquina de Adição Unilateral
Nesta seção vamos introduzir o conceito de Máquina de Adição para o caso unilateral.

Definição 2.1. Seja α+ = (j1, j2, . . . ) uma sequência de inteiros onde cada ji ≥ 2. Denotamos
por ∆α+ o conjunto de todas as sequências (x1, x2, . . . ) onde cada
xi ∈ {0, 1, . . . , ji−1} para cada i. O conjunto ∆α+ é chamado de Máquina de Adição α+-ádica.

Exemplo 2.1. Seja α+ = (2, 2, 2, . . . ), então dada uma sequência (x1, x2, . . . ), cada xi ∈ {0, 1}.
Assim, ∆α+ = {0, 1}N.

Definição 2.2. Definimos a aplicação, fα+ : ∆α+ → ∆α+ dada por

fα+(x) = (x1, x2, . . . ) + (1, 0, . . . )

chamada Aplicação da máquina de adição.

Proposição 2.1. A aplicação da máquina de adição ∆α+ é um homeomorfismo.

Definição 2.3. Um conjunto A ⊂ X é dito minimal para f : X → X se

1. A é fechado e f -invariante;

2. Se B ⊂ A é um subconjunto fechado e f -invariante, então B = ∅ ou B = A.

Nesse caso, f|A : A → A é chamado um sistema dinâmico minimal.

Proposição 2.2. Seja f : X → X um homeomorfismo. Dizemos que X é um conjunto minimal
para f se, e somente se, todos os pontos de X possuem órbita densa em X.

A máquina de adição unilateral é um exemplo de um sistema dinâmico onde ∆α+ é minimal.
Tais sistemas desempenham um papel importante na construção de contraexemplos em teoria
ergódica e sistemas dinâmicos.

Proposição 2.3. O sistema dinâmico (∆α+ , fα+) é minimal.

3 Espaço Zip

Nesta seção vamos introduzir o conceito de um espaço Zip. Consideremos dois alfabetos finitos
Z = {z1, z2, . . . , zk} e S = {s1, s2, . . . , sn} com k ≤ n [3], [4].

Definição 3.1. Dizemos que a aplicação τ : S → Z é um mapa de transição se τ for sobrejetora
e não necessariamente invertível.

Definição 3.2. Seja ΣS o espaço S-completo. Definimos o espaço Zip denotado por ΣZ,S onde
cada y ∈ ΣZ,S corresponde a um ponto x ∈ ΣS de modo que

yi =

{
xi ∈ S, se i ≥ 0

τ(xi), se i < 0.

Exemplo 3.1. Consideremos os alfabetos Z = {a, b, c} e S = {0, 1, 2, 3, 4, 5}. Dessa forma,
podemos definir um mapa de transição τ : S → Z dado por

τ(0) = τ(1) = a, τ(2) = τ(3) = b e τ(4) = τ(5) = c.

Assim, se tomarmos a sequência (. . . , 5, 0, 3 ; 1, 4, 2, . . . ) então uma sequência y ∈ ΣZ,S tem a
forma

y = (. . . , τ(5), τ(0), τ(3) ; 1, 4, 2, . . . ) = (. . . , c, a, b ; 1, 4, 2, . . . ).
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Definição 3.3. Seja ΣZ,S o espaço Zip. Definimos a métrica d : ΣZ,S × ΣZ,S → [0, 1] dada por:

d(x, y) =

{
1

2M(x,y) , se x ̸= y

0, se x = y

onde M(x, y) = min
i∈Z

|i| ; xi ̸= yi.

A topologia métrica induzida pela métrica d é equivalente a topologia produto, assim, os con-
juntos da forma Csi

i = {x ∈ ΣZ,S ; xi = s− i }, onde si ∈ S para i ≥ 0 e si ∈ Z para i < 0, formam
uma sub-base. Os elementos da base associada chamados de cilindros gerais, que terão formato
C

si1 ,...,sik
i1,...,ik

= C
si1
i1

∩ · · · ∩ C
sik
ik

, com sij ∈ S para ij ≥ 0 e sij ∈ Z para ij < 0 [3].

Definição 3.4. Seja (ΣZ,S , d) e τ : S → Z um mapa de transição. A aplicação Zip-Shift
στ : ΣZ,S → ΣZ,S dada por:

στ (. . . , x−n, . . . , x−1 ; x0, x1, . . . , xn, . . . ) = (. . . , x−n, . . . , x−1, τ(x0) ;x1, . . . , xn, . . . ).

O par (ΣZ,S , στ ) chamamos de um espaço zip-shift, onde ΣZ,S é o espaço (Z,S)-completo.

Exemplo 3.2. Consideremos Z = S = {0, 1} onde τ : S → S é a aplicação identidade. Então o
mapa zip-shift coincide com a função shift bilateral já que

στ (. . . , x−2, x−1 ; x0, x1, . . . ) = (. . . , x−2, x−1, τ(x0) ; x1, x2, . . . ) = σ(. . . , x−2, x−1 ; x0, x1, . . . ).

Exemplo 3.3. Consideremos as hipóteses do exemplo 3.1. Dessa forma,

στ (. . . , c, a, b ; 1, 4, 2, . . . ) = (. . . , c, a, b, τ(1) ; 4, 2, . . . ) = (. . . , c, a, b, a ; 4, 2, . . . )

4 A Máquina de Adição Bilateral
Nesta seção vamos apresentar o conceito de Máquina de Adição Bilateral.

Definição 4.1. Seja α = (. . . , 2, 2 ; j, j, . . . ) com j ≥ 2 e os alfabetos finitos Z = {a0, b1} e
S = {0, 1, . . . , j − 1} com j ≥ 2. Definimos o conjunto ∆α chamado Máquina de Adição
Bilateral α-ádica sendo um espaço Zip associado aos conjuntos Z e S.

Pela definição do espaço Zip, sabemos que a máquina de adição bilateral está associada à um
mapa de transição arbitrário. A partir daqui vamos fixar o mapa de transição

τ(xi) =

{
a0, xi < j − 1

b1, xi = j − 1.
(1)

Exemplo 4.1. Consideremos α = (. . . , 2, 2 ; 4, 4, . . . ), então um x = (xn)n∈Z ∈ ∆α tem a forma
(xn) = (. . . , b1, a0, b1; 3, 0, 2, . . . ).

Exemplo 4.2. Consideremos α = (. . . , 2, 2 ; 2, 2, . . . ), isto é, S = Z. Notemos que, as sequências
em ∆α correspondem as sequências no espaço S-completo ΣS , isto pois o mapa de transição τ
coincide com a função identidade.

Definição 4.2. Seja fα : ∆α → ∆α dada por

fα(x) = (. . . , x−2, x−1 ; x0, x1, . . . ) + (. . . , a0, a0 ; 1, 0, . . . ) (2)

chamada Aplicação da máquina de adição bilateral.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

DOI: 10.5540/03.2026.012.01.0306 010306-3 © 2026 SBMAC

http://dx.doi.org/10.5540/03.2026.012.01.0306


4

Observação 4.1. Como nosso objetivo é generalizar a máquina de adição unilateral, do ponto de
vista binário, a0 = 0 e b1 = 1 . Assim, a0 + 1 = b1 e b1 + 1 = a0.

Exemplo 4.3. Consideremos α = (. . . , 2, 2 ; 3, 3, . . . ) e x = (. . . , b1, b1, a0 ; 2, 1, 1, . . . ) ∈ ∆α,
então fα(x) = (. . . , b1, b1, b1 ; 0, 2, 1, . . . ).

Proposição 4.1. A aplicação fα é um homeomorfismo.

Assim como no caso unilateral, esta aplicação também induz uma operação entre os elementos
deste conjunto, ou seja:

Definição 4.3. Dadas as sequências x, y, z ∈ ∆α. A soma x+ y = z é dada por

• i ≥ 0:
As coordenadas resultantes são: z0 = (x0 + y0)mod j, z1 = (x1 + y1 + t1)mod j onde{

t1 = 0, se x0 + y0 < j

t1 = 1, se x0 + y0 ≥ j.
(3)

z2 = (x2 + y2 + t2)mod j onde{
t2 = 0, se x1 + y1 + t1 < j

t2 = 1, se x1 + y1 + t1 ≥ j,
(4)

Para obter os próximos termos, basta prosseguirmos com este raciocínio. Neste caso, a soma
é feita como na máquina de adição unilateral.

• i < 0: As coordenadas resultantes são: z−1 = (x−1 + y−1 + s1)mod 2 com s1 = τ(x0 +
y0 mod j), z−2 = (x−2 + y−2 + s2)mod 2 onde{

s2 = 0, se x−1 + y−1 + s1 < 2

s2 = 1, se x−1 + y−1 + s1 ≥ 2.
(5)

Para obter os termos anteriores, basta prosseguirmos com este raciocínio.

Lema 4.1. Se x pertence a um cilindro de tamanho 2n+ 1, então existe um cilindro de tamanho
2n+ 2 tal que fα(x) pertence a este cilindro.

Lema 4.2. Dada uma sequência y ∈ ∆α. Se yi ∈ S para i ≥ 0 e yi ∈ Z para i < 0, então
∆α =

⋃
C

y−n,...,y0,...,yn

−n,...,0,...,n .

Teorema 4.1. O sistema dinâmico (∆α, fα) é minimal.

Demonstração. Aqui vamos apresentar a ideia da prova. Para facilitar a compreensão, restrin-
giremos a demonstração para S = {0, 1, 2} já que para os outros casos o raciocínio é análogo.
Para evitar sobrecarregar as notações, omitiremos os carregamentos que acompanham a função da
máquina de adição bilateral.

Queremos mostrar que ∆α é um conjunto fα-minimal, como fα é um homeomorfismo, pela
Proposição 2.2, basta mostrarmos:

∀x ∈ ∆α, O+
fα

∩ C
y−k,...,y−1,x0,...,xk

−k,...,−1,0,...,k ̸= ∅ (6)

onde yi ∈ Z para i < 0 e xi ∈ S para i ≥ 0. Para isto, provemos usando o método de indução
matemática, com efeito:
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1. Cilindros de tamanho 1:
Pelo lema 4.2, sabemos que ∆α = Ca0

−1 ∪Cb1
−1. Aqui fixamos a coordenada y−1 e variamos os

elementos que podem ser assumidos nesta posição. De modo geral, se fixarmos xi para i ≥ 0
o raciocínio é análogo ao caso unilateral. Dessa forma, dado x ∈ ∆α tal que

x ∈ Ca0
−1 ⇒ x = (. . . , y−2, a0 ; x0, x1, . . . ) (7)

⇒ fα(x) = (. . . , y−2, a0 ; x0, x1, . . . ) + (. . . , a0, a0 ; 1, 0, . . . ) (8)
⇒ fα(x) = (. . . , y−2 + s2, s1 ; x0 + 1, x1 + t1, . . . ) (9)

Temos então dois casos a serem analisados:

• Se x0+1 < j, então não há carregamentos para o passaod e não há carregamentos para
o futuro. Logo, fα(x) ∈ Ca0

−1.

• Se x0+1 ≥ j, então t1 = s1 = 1, logo, fα(x) = (. . . , y−2+s2, 1 ; x0+1, x1+1, . . . ) ∈ Cb1
−1.

Portanto, O+
fα
(x) ∩ Cyi

−1 ̸= ∅ para yi ∈ {a0, b1}.

2. Cilindros de tamanho 2:
Pelo lema 4.2, temos:

∆α = Ca0,0
−1,0 ∪ Ca0,1

−1,0 ∪ Cb1,0
−1,0 ∪ Cb1,1

−1,0 ∪ Ca0,2
−1,0 ∪ Cb1,2

−1,0. (10)

Agora, suponhamos que x ∈ Ca0,0
−1,0. Logo,

x ∈ Ca0,0
−1,0 ⇒ x = (. . . , y−2, a0 ; 0, x1, . . . ) (11)

⇒ fα(x) = (. . . , y−2, a0 ; 0, x1, . . . ) + (. . . , a0, a0 ; 1, 0, . . . ) (12)
⇒ fα(x) = (. . . , y−2 + s2, a0 ; 1, x1 + t1, . . . ) (13)
⇒ fα(x) ∈ Ca0,1

−1,0 (14)

Dessa forma,

fα(x) ∈ Ca0,1
−1,0 ⇒ fα(x) = (. . . , y2, a0 ; 1, x1, . . . ) (15)

⇒ f2
α(x) = (. . . , y2, a0 ; 1, x1, . . . ) + (. . . , a0, a0 ; 1, 0, . . . ) (16)

⇒ f2
α(x) = (. . . , y−2 + s2, a0 ; 2, x1 + t1, . . . ) (17)

⇒ f2
α(x) ∈ Ca0,2

−1,0. (18)

Por recursão, podemos observar que as iteradas de x pela fα intercecta todos os cilindros de
tamanho 2 que descrevem o espaço. Além disso, a iterada f6

α(x) retorna ao cilindro original
Ca0,0

−1,0.

3. Cilindos de tamanho 2k + 1:
Suponhamos então que a hipótese é válida para cilindros de tamanho 2k + 1, isto é

∀x ∈ ∆α, O+
fα
(x) ∩ C

y−k,...,y−1,x0,...,xk

−k,...,−1,0,...,k ̸= ∅. (19)

Como a interseção acima é não vazia, pelo lema 4.1 deve existir m ∈ N tal que fm
α (x) ∈

C
y−k,...,y−1,x0,...,xk

−k,...,−1,0,...,k . Nosso objetivo é exibir um n ∈ N tal que (fm
α )n(x) pertence a algum

cilindro de tamanho 2k + 2. Sabemos que

C
y−k,...,y−1,x0,...,xk

−k,...,−1,0,...,k = C
a0,y−k,...,y−1,x0,...,xk

−k−1,−k,...,−1,0,...,k ∪ C
b1,y−k,...,y−1,x0,...,xk

−k−1,−k,...,−1,0,...,k . (20)
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Observemos que também é possível descrever o espaço ∆α tomando cilindros de tamanho
2k+2 com coordenada k+1 possuindo elementos em S, e neste caso, a demonstração coincide
com o resultado análogo da máquina de adição unilateral.
Suponhamos que fm

α (x) ∈ C
a0,y−k,...,y−1,x0,...,xk

−k−1,−k,...,−1,0,...,k , daí

fm
α (x) = (. . . , a0, y−k, . . . , y−2, y−1 ; x0, x1, . . . , xk, . . . ) (21)

⇒ fα(f
m
α (x)) = (. . . , a0, y−k, . . . , y−2, y−1 ; x0, x1, . . . , xk, . . . ) + (. . . , a0, a0 ; 1, 0, . . . ) (22)

⇒ fα(f
m
α (x)) = (. . . , sk−1, y−k + sk, . . . , y−2 + s2, y−1 + s1 ; x0 + 1, x1 + t1, . . . ) (23)

Omitindo os carrementos obtidos a cada iteração da aplicação fα, obtemos
f2
α(f

m
α (x)) = (. . . , sk−1 + . . . , y−k + . . . , . . . , y−1 + s1 + . . . ; x0 + 2, x1 + t1 + . . . , xk + . . . , . . . ) (24)

e
f3
α(f

m
α (x)) = (. . . , sk−1 + . . . , y−k + . . . , . . . , 1 + y−1 + . . . ; x0, 1 + x1 + . . . , xk + . . . , . . . ) (25)

Assim, para carregar 1 na coordenada −1 da sequência, basta iterarmos 3-vezes. Da mesma
forma, para carregar 1 na coordenada −2 da sequência, basta iterarmos (3 · 2)-vezes.

f6
α(f

m
α (x)) = (. . . , sk−1 + . . . , . . . , 1 + y−2 + . . . , y−1 + . . . ; x0 . . . , 2 + x1 + . . . , 1 + x2 + . . . , . . . ) (26)

Seguindo o processo de forma recorrente, para obtermos b1 na coordenada −k − 1, basta
calcular

(fm
α )3·2

(−k−1)

(x). (27)

Portanto, tomando todos os carregamentos iguais a zero,

(fm
α )3·2

(−k−1)

(x) ∈ C
b1,y−k,...,y−1,x0,...,xk

−k−1,−k,...,−1,0,...,k (28)

e a interseção com a órbita de fm
α (x) é não vazia.

De modo geral, quando consideramos α = (. . . , 2, 2 ; j, j, . . . ) o raciocínio é semelhante, com a
observação de que há uma quantidade maior de cilindros e carregamentos com n = j · 2k. Além
disso, se descrevermos o espaço ∆α por cilindros com entrada até k + 1, então para carregar 1
na coordenada k + 1 da sequência, n = jk. Por fim, notemos que, é possível carregamos 1 na
coordenada −k − 1 e k + 1 quando j · 2k = jk.

4.1 Trabalhos Futuros
Como trabalho futuro em continuidade a estes estudos, buscaremos apresentar uma caracteriza-

ção para as Máquinas de Adição Bilaterais em termos de conjugação ou semiconjugação topológica.
Além disso, procuraremos encontrar condições relacionadas à existência de órbitas recorrentes para
garantir tal conjugação topológica, seguindo as direções do artigo [1].
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