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Adjacentes

Rogério T. Cavalcanti1
IME | UERJ, Rio de janeiro, RJ e DFI | UNESP, Guaratinguetá, SP

Resumo. Após uma exposição concisa das álgebras de Clifford e a definição de espinores como
ideais minimais dessas álgebras, é revelada a estrutura algébrica de duais gerais potencialmente
aplicáveis à física de altas energias e algumas de suas propriedades. Aplicações entre esses duais
são introduzidas, bem como condições sob as quais conjuntos dessas aplicações formam um grupo.
Além disso, são exploradas as definição de aplicações duais como elementos de anéis de grupo, uma
estrutura bastante raras nas aplicações da álgebra à física.
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1 Introdução
Espinores desempenham um papel fundamental na física de partículas fermiônicas desde a

formulação do spin por Pauli [17] e a teoria de Dirac para o elétron [10]. O conceito matemático,
contudo, surge com o trabalho clássico de Elie Cartan [7]. Desde então, a teoria dos espinores passou
por um enorme desenvolvimento, e tanto os aspectos matemáticos quanto os físicos adquiriram
grande relevância na física de altas energias [18] e geometria [14]. Uma característica central
dos espinores na física é que um férmion isolado não pode ser detectado [21]. Espinores, como
elementos do espaço que carrega representação irredutível de SL(2,C), só geram quantidades físicas
quando compostos com o dual espinorial. Tradicionalmente, usava-se apenas o dual de Dirac,
pois ele garante relações de ortonormalidade e localidade adequadas para campos fermiônicos.
Recentemente, novos duals surgiram em teorias quânticas candidatas a descrever a matéria escura
[1, 4, 5]. Em particular os espinores Elko2 [4], cuja característica relevante para a presente análise
é que, desde a formulação inicial, exigem uma nova formulação de espinor dual para que seja
fisicamente consistente [4]. Essa necessidade culminou no desenvolvimento de uma teoria para o
dual espinorial [2, 3, 19, 20], baseada em um conjunto criterioso de requisitos físicos e formais.

Formulações gerais para duais de espinores podem oferecer uma base sólida para a proposição
de campos quânticos além do Modelo Padrão. Ao estender a estrutura algébrica dos duais, como
proposto neste trabalho, torna-se possível acomodar tipos de espinores que não são contemplados
pelas formulações tradicionais, incluindo aqueles relevantes para candidatos à matéria escura ou
interações não convencionais. Esses duais generalizados permitem a construção de Lagrangianas
e propagadores consistentes para campos fermiônicos não padrão, oferecendo novas ferramentas
teóricas para a exploração de extensões do arcabouço atual da física de partículas.

Neste artigo, nosso objetivo é compreender, seguindo a inspeção criteriosa da definição geral
da álgebra de Clifford para duais espinoriais introduzida na Ref. [20] e revisada na Seção 2, as

1rogerio.cavalcanti@ime.uerj.br
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conexões entre diferentes duais espinoriais permitidos, os mapeamentos que os associam e revelar
algumas estruturas algébricas ocultas por trás desses mapeamentos. Na Seção 3, investigamos ade-
quadamente as estruturas algébricas associadas aos mapeamentos previamente definidos, incluindo
estruturas de grupo e anéis de grupo definidas sobre o conjunto de mapeamentos entre diferentes
duais [8]. A Seção 4 é reservada para as considerações finais. Deixamos para o Apêndice a forma
matricial explícita dos operadores (elementos do grupo) estudados na Seção 3.

2 Formulação Algébrica e Espinores Duais Gerais

É um fato bem conhecido que os aspectos formais de espinores são melhor entendidos por meio
de estudos detalhados desses objetos definidos sobre a estrutura das álgebras de Clifford [11, 12],
cuja definição é dada a seguir. Dado um espaço vetorial real equipado com uma forma quadrática
simétrica g de assinatura (p, q), denotado por Rp,q, sua álgebra de Clifford associada é definida
da seguinte forma: A álgebra de Clifford Cℓp,q, associada ao espaço quadrático Rp,q, é a álgebra
associativa unital tal que

(i) A aplicação de Clifford γ : Rp,q → Cℓp,q é linear e satisfaz 3

γ(v)γ(u) + γ(u)γ(v) = 2g(v, u), ∀ v, u ∈ Rp,q;

(ii) Se (Y, γ′) é outra álgebra associativa unital e uma aplicação γ′ : Rp,q → Y satisfaz γ′(v)γ′(u)+
γ′(u)γ′(v) = 2g(v, u), então existe um homomorfismo único ϕ : Cℓp,q → Y tal que γ′ = ϕ ◦ γ.

Sob a estrutura das álgebras de Clifford, além da definição clássica de espinores como elementos
do espaço que carrega a representação irredutível do grupo Spin (o grupo de Lorentz no caso do
espaço de Minkowski), existe também a importante, embora menos popular, definição algébrica
[9]. Espinores algébricos são ideais minimais à esquerda construídos a partir de idempotentes
primitivos da álgebra base. Em geral, dada a álgebra de Clifford Cℓp,q e um idempotente primitivo
f , os ideais mínimos à esquerda têm a forma Cℓp,qf . Além disso, um anel de divisão K, isomorfo
a R, C ou H (reais, complexos e quatérnions), é obtido dependendo da dimensão e assinatura do
espaço, por meio de fCℓp,qf . A aplicação

· : Cℓp,qf ×K → Cℓp,qf
(ψ, a) 7→ ψ · a ≡ ψa,

(1)

define uma estrutura de módulo à direita sobre K no espaço Cℓp,qf . Equipado com essa estrutura,
Cℓp,qf é chamado de espaço de espinores algébricos de Cℓp,q, denotado por Sp,q. Analogamente,
ideais minimais à direita podem ser construídos a partir de fCℓp,q. O anel de divisão e a estrutura
de módulo sobre K são análogos para esses ideais. O espaço de espinores algébricos dos ideais à
direita da álgebra Cℓp,q é denotado por S⋆p,q. A ação de um elemento de S⋆p,q sobre Sp,q define uma
aplicação linear cuja imagem é o anel de divisão K. Além disso, S⋆p,q é isomorfo ao espaço das
aplicações lineares L(Sp,q,K), motivando a introdução de produtos internos no espaço de espinores
algébricos. Dessa forma, um produto interno β : Sp,q × Sp,q → K é definido associando um espinor
arbitrário ψ ∈ Sp,q ao seu correspondente ψ⋆ ∈ S⋆p,q, chamado de adjunto em relação ao produto
interno β, tal que β(ψ, ϕ) = ψ⋆ϕ ∈ K.

Ideais à direita podem ser transformados em ideais à esquerda, e vice-versa, por involuções da
álgebra. No entanto, os idempotentes não são sempre preservados. Em outras palavras, denotando
uma involução genérica por α, tem-se que α(Cℓp,qf) = α(f)Cℓp,q, mas, em geral, α(f) ̸= f .

3Em geral, por simplicidade, a aplicação de Clifford é omitida e o produto de Clifford é denotado por justaposição.
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Entretanto, sempre existe um elemento h ∈ Cℓp,q tal que α(f) = h−1fh e α(h) = h [6, 12]. Isso
permite definir ψ⋆ = α(hψ) = hα(ψ). Assim, um produto interno pode ser obtido por

β(ψ, ϕ) = hα(ψ)ϕf ∈ fCℓp,qf ≃ K. (2)

Onde α é a chamada de involução adjunta do produto interno β.
Ao lidar com álgebras de Clifford complexificadas C ⊗ Cℓp,q, a composição da conjugação

complexa com as outras involuções algébricas altera a involução adjunta dos produtos internos.
A situação relevante para nós é a que a involução adjunta é equivalente à conjugação hermitiana
na representação matricial da álgebra. Para isso, é suficiente que α∗(a) = h−1a†h e h† = h, para
qualquer a ∈ C⊗Cℓp,q (em particular para a ∈ C⊗Sp,q) e h ∈ C⊗Cℓp,q [6, 12]. O espinor adjunto
(ou dual) ψ⋆ ∈ C⊗ S⋆p,q é então dado por

ψ⋆ = hα∗(ψ) = ψ†h = [hψ]†. (3)

Definindo h = η∆, com η† = η, segue que ∆ deve satisfazer a condição

∆†η = η∆. (4)

Isso impõe uma vínculos importantes ao operador ∆. O caso particular do dual de Dirac, com
∆ = I, obviamente satisfaz (4). O dual alternativo de Dirac encontrado na Ref. [19], também
obedece à Eq. (4). Uma caracterização adicional do operador ∆ pode ser encontrada tomando
uma matriz complexa geral ∆ = [aij ] e impondo a Eq. (4), o que resulta em

∆ =


a11 a12 a13 a14
a21 a22 a∗14 a24
a31 a32 a∗11 a∗21
a∗32 a42 a∗12 a∗22

 , com a13, a31, a24, a42 ∈ R. (5)

A matriz acima possui uma estrutura clara de matriz em blocos, que, como esperado, é compatível
com aquela encontrada em [3] e [19]. Ela pode ser representada como

∆ =

[
A B
C A†

]
, com B† = B e C† = C. (6)

Pode-se mostrar que o operador ∆ não afeta a invariância de Lorentz do produto interno, sendo
essa tarefa cumprida por η = γ0 [20], evidenciando ∆ como o único responsável pelos graus de
liberdade de um dual covariante de Lorentz geral.

3 Mapeamentos Duais e Estruturas Algébricas
Poderíamos agora explorar construção dual da Sessão anterior, ou, alternativamente, a partir

do dual proposto em [3], definir um mapeamento dual que preserve toda a generalidade de ∆. Esse
será o caminho seguido nessa Sessão. Denotaremos esse mapeamento por Ω. A principal vantagem
dessa abordagem é que, quando definido dessa maneira, algumas estruturas algébricas inesperadas
do conjunto de mapeamentos Ω são reveladas. A relação entre ∆ e Ω é obtida definindo-se um
dual arbitrário do espinor, ψ⋆, de tal forma que:

ψ⋆ = [Ωγ0Ξψ]† = ψ†γ0ΞΩ. (7)

Comparando as Eqs. (3) e (7), obtemos γ0∆ = Ωγ0Ξ, ou, equivalentemente, ∆ = γ0Ωγ0Ξ e
Ω = γ0∆Ξγ0. Usando a equação (4) segue a restrição fundamental para o mapeamento Ω:

Ω† = γ0Ξ†∆†γ0 = Ξγ0γ0∆ = Ξ∆ = Ξγ0Ωγ0Ξ. (8)
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Agora estamos aptos a investigar a estrutura algébrica associada aos mapeamentos Ω. A primeira
questão é a possibilidade de que um conjunto de mapeamentos Ω forme um grupo. Para isso, um
subconjunto de GL(4,C), que denotaremos genericamente por GΩ, deve satisfazer as propriedades
de associatividade, conter a unidade, ser invertível e satisfazer a propriedade de fechamento.

A associatividade decorre diretamente da álgebra matricial. A unidade corresponde ao caso
∆ = Ξ. A invertibilidade é garantida ao mostrar que, para um Ω invertível que obedeça à Eq.
(8), vale a identidade

(
Ω−1

)†
= Ξγ0Ω−1γ0Ξ. De fato, como Ω† = Ξγ0Ωγ0Ξ, obtemos

(
Ω†)−1

=

Ξγ0Ω−1γ0Ξ. Portanto, o resultado segue de
(
Ω−1

)†
=

(
Ω†)−1. A propriedade de fechamento é

menos imediata e impõe uma restrição nos possíveis candidatos a GΩ. De fato, dados Ω1 e Ω2, a
Eq. (8) exige que (Ω1Ω2)

†
= Ξγ0Ω1Ω2γ

0Ξ. Por outro lado,

(Ω1Ω2)
†
= Ω†

2Ω
†
1 = Ξγ0Ω2γ

0ΞΞγ0Ω1γ
0Ξ = Ξγ0Ω2Ω1γ

0Ξ. (9)

Comparando as duas equações, concluímos que Ω1Ω2 = Ω2Ω1, ou seja, GΩ deve ser um subgrupo
abeliano de GL(4,C). A partir disso obtemos a restrição correspondente para ∆:

∆1Ξ∆2Ξ = ∆2Ξ∆1Ξ. (10)

Como Ξ2 = I, isso implica que ∆1Ξ∆2 = ∆2Ξ∆1. Uma forma simples para a descrição mais geral
de GΩ não foi encontrada, apenas casos particulares que ilustram a estrutura algébrica adjacente,
como explicitado nas subseções a seguir.

3.1 Grupos GΩ

Uma vez estabelecidas as condições para que GΩ seja um grupo, podemos agora explorar alguns
casos particulares explicitamente. A forma matricial dos elementos abaixo, bem como algumas de
suas propriedades úteis, são apresentadas no Apêndice.

G(ϕ) = G ≡ m

2E
{γ0,Ξ} =

m

2E

(
γ0Ξ + Ξγ0

)
, F(θ, ϕ) = F ≡ m

2p
[γ0,Ξ] =

m

2p

(
γ0Ξ− Ξγ0

)
F(θ, ϕ)G(ϕ) = FG =

m2

4Ep
[Ξ†,Ξ], Ξ†(pµ) = Ξ† = γ0Ξγ0, GΞ†(pµ) =

m

2E

(
Ξ†Ξ + I

)
γ0,

H(pµ) ≡ m2ΞΞ†, H−1(pµ) = m−2Ξ†Ξ = m−4γ0Hγ0.

Três estruturas de grupo são identificadas ao observar as propriedades acima. Duas delas
são diretamente dadas por GF ≡ {I,G,F ,FG} e GΞ† ≡ {I,G,Ξ†,GΞ†}, cujas tabelas de Cayley
são apresentadas abaixo. Esses grupos são isomorfos ao grupo clássico de Klein K4. Apesar do
isomorfismo, GF e GΞ são topologicamente não equivalentes, pois os parâmetros de GF são todos
compactos. O grupo restante, denotada por GH, não é de ordem finita como os anteriores. Ele é
gerada por {I,F ,G,H,H−1} e tem GF como um subgrupo.

GF I G F FG
I I G F FG
G G I FG F
F F FG I G
FG FG F G I

and

GΞ† I G Ξ† Ξ†G
I I G Ξ† Ξ†G
G G I Ξ†G Ξ†

Ξ† Ξ† Ξ†G I G
Ξ†G Ξ†G Ξ† G I

Tabela 1: Cayley tables for GF ≡ {I,G,F ,FG} (left panel) and GΞ† ≡ {I,G,Ξ†,GΞ†} (right panel).
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3.2 Anéis de Grupo RGΩ

A linearidade da Eq. (8) garante que combinações de mapeamentos Ω também são mapeamen-
tos Ω. Isso permite a definição de uma estrutura mais ampla, a saber, a de anéis de de grupo [13,
15, 16]. A Eq. (8) também restringe os escalares da combinação linear a pertencerem a R. Assim,
um elemento µ do anel de grupo RGΩ é representado na forma

µ =
∑

ω ∈ GΩ

aωω, aω ∈ R. (11)

Alguns anéis de grupo RGΩ particulares são apresentados abaixo. Note que o determinante fornece
as condições sobre os coeficientes reais para que Ω seja invertível:

GΩ = GΞ† :


Ω = aI+ bΞ† + cG + dΞ†G,
∆ = bI+ aΞ + dG + cΞG,
det[Ω] = (a+ b− c− d)(a− b+ c− d)(a− b− c+ d)(a+ b+ c+ d).

(12)

GΩ = GF :


Ω = aI+ bF + cG + dFG,
∆ = (aI− bF + cG − dFG)Ξ,
det[Ω] = (a+ b− c− d)(a− b+ c− d)(a− b− c+ d)(a+ b+ c+ d).

(13)

GΩ = GH :


Ω = aI+ bF + cG + dFG + h1H+ h2H2 + · · ·+ F(f1H+ f2H2 + · · · )+

+G(g1H+ g2H2 + · · · ) + FG(fg1H+ fg2H2 + · · · ) + h−1H−1 + h−2H−2 + · · · ,
∆ = Ξ[aI+ bF + cG + dFG + h1H+ h2H2 + · · ·+ F(f1H+ f2H2 + · · · )+

+G(g1H+ g2H2 + · · · ) + FG(fg1H+ fg2H2 + · · · ) + h−1H−1 + h−2H−2 + · · · ].

A possibilidade de mapeamentos Ω como elementos de anéis de grupo aumenta consideravelmente
a variedade de duais, mesmo para o conjunto bastante restrito de mapeamentos Ω explicitamente
introduzido aqui. Tal possibilidade merece uma atenção cuidadosa em investigações futuras.

4 Considerações Finais

Neste trabalho, exploramos a estrutura algébrica de duais de espinores em álgebras de Clifford,
estabelecendo as condições para que conjuntos de mapeamentos entre esses duais formem um
grupo. Além disso, introduzimos a formulação desses mapeamentos dentro da estrutura de anéis
de grupo, apresentando casos particulares explicitamente. Até onde é de nosso conhecimento, esta
é a primeira aplicação de anéis de grupo em teorias físicas, o que abre novas possibilidades para a
análise de simetrias e transformações em espaços espinoriais. Esses resultados sugerem caminhos
promissores para investigações futuras, incluindo a aplicação dessas estruturas a teorias quânticas
de campos e possíveis conexões com extensões do Modelo Padrão.
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Apêndice
Para maior clareza e conveniência, este apêndice apresenta explicitamente a forma matricial

dos termos utilizados ao longo da Seção 3.

G(ϕ) =


0 0 0 −ie−iϕ

0 0 ieiϕ 0

0 −ie−iϕ 0 0

ieiϕ 0 0 0

 ,

F(θ, ϕ) =


0 0 − sin θ e−iϕ cos θ

0 0 eiϕ cos θ sin θ

sin θ −e−iϕ cos θ 0 0

−eiϕ cos θ − sin θ 0 0

 ,

Ξ† = −
i

m


p sin θ e−iϕ(E − p cos θ) 0 0

−eiϕ(E + p cos θ) −p sin θ 0 0
0 0 −p sin θ e−iϕ(E + p cos θ)
0 0 −eiϕ(E − p cos θ) p sin θ

 ,

H =


E2 + 2p cos θE + p2 2e−iϕEp sin θ 0 0

2eiϕEp sin θ E2 − 2p cos θE + p2 0 0
0 0 E2 − 2p cos θE + p2 −2e−iϕEp sin θ
0 0 −2eiϕEp sin θ E2 + 2p cos θE + p2

 ,

H−1 =


E2 − 2p cos θE + p2 −2e−iϕEp sin θ 0 0

−2eiϕEp sin θ E2 + 2p cos θE + p2 0 0
0 0 E2 + 2p cos θE + p2 2e−iϕEp sin θ
0 0 2eiϕEp sin θ E2 − 2p cos θE + p2

 ,
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