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Resumo. Apoés uma exposigdo concisa das algebras de Clifford e a definigdo de espinores como
ideais minimais dessas &algebras, é revelada a estrutura algébrica de duais gerais potencialmente
aplicaveis a fisica de altas energias e algumas de suas propriedades. Aplicagoes entre esses duais
sao introduzidas, bem como condigbes sob as quais conjuntos dessas aplicagbes formam um grupo.
Além disso, sdo exploradas as defini¢do de aplicagdes duais como elementos de anéis de grupo, uma
estrutura bastante raras nas aplicagoes da algebra & fisica.
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1 Introducao

Espinores desempenham um papel fundamental na fisica de particulas fermionicas desde a
formulagdo do spin por Pauli [17] e a teoria de Dirac para o elétron [10]. O conceito matemético,
contudo, surge com o trabalho classico de Elie Cartan [7]. Desde entéo, a teoria dos espinores passou
por um enorme desenvolvimento, e tanto os aspectos matemaéticos quanto os fisicos adquiriram
grande relevancia na fisica de altas energias [18] e geometria [14]. Uma caracteristica central
dos espinores na fisica ¢ que um férmion isolado ndo pode ser detectado [21]. Espinores, como
elementos do espago que carrega representacao irredutivel de SL(2,C), s6 geram quantidades fisicas
quando compostos com o dual espinorial. Tradicionalmente, usava-se apenas o dual de Dirac,
pois ele garante relagoes de ortonormalidade e localidade adequadas para campos fermidnicos.
Recentemente, novos duals surgiram em teorias quanticas candidatas a descrever a matéria escura
[1, 4, 5. Em particular os espinores Elko? [4], cuja caracteristica relevante para a presente anélise
é que, desde a formulacdo inicial, exigem uma nova formulagdo de espinor dual para que seja
fisicamente consistente [4]. Essa necessidade culminou no desenvolvimento de uma teoria para o
dual espinorial [2, 3, 19, 20], baseada em um conjunto criterioso de requisitos fisicos e formais.

Formulagoes gerais para duais de espinores podem oferecer uma base solida para a proposi¢ao
de campos quanticos além do Modelo Padrao. Ao estender a estrutura algébrica dos duais, como
proposto neste trabalho, torna-se possivel acomodar tipos de espinores que nao sao contemplados
pelas formulagoes tradicionais, incluindo aqueles relevantes para candidatos & matéria escura ou
interagoes nao convencionais. Esses duais generalizados permitem a construgao de Lagrangianas
e propagadores consistentes para campos fermionicos nao padrao, oferecendo novas ferramentas
tedricas para a exploracao de extensoes do arcabougo atual da fisica de particulas.

Neste artigo, nosso objetivo é compreender, seguindo a inspecao criteriosa da definicao geral
da algebra de Clifford para duais espinoriais introduzida na Ref. [20] e revisada na Secao 2, as
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2Elko é um acrénimo do termo alemao “Eigenspinoren des Ladungskonjugationsoperators”, que significa “autoes-
pinor do operador de conjugagao de carga”.
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conexoOes entre diferentes duais espinoriais permitidos, os mapeamentos que os associam e revelar
algumas estruturas algébricas ocultas por tras desses mapeamentos. Na Se¢ao 3, investigamos ade-
quadamente as estruturas algébricas associadas aos mapeamentos previamente definidos, incluindo
estruturas de grupo e anéis de grupo definidas sobre o conjunto de mapeamentos entre diferentes
duais [8]. A Segdo 4 é reservada para as consideragoes finais. Deixamos para o Apéndice a forma
matricial explicita dos operadores (elementos do grupo) estudados na Segao 3.

2 Formulacao Algébrica e Espinores Duais Gerais

E um fato bem conhecido que os aspectos formais de espinores sao melhor entendidos por meio
de estudos detalhados desses objetos definidos sobre a estrutura das algebras de Clifford [11, 12],
cuja definicdo é dada a seguir. Dado um espaco vetorial real equipado com uma forma quadrética
simétrica g de assinatura (p,q), denotado por R?-?, sua algebra de Clifford associada é definida
da seguinte forma: A dlgebra de Clifford Cl, 4, associada ao espago quadrdtico R4, é a dlgebra
associativa unital tal que

(i) A aplicagdo de Clifford v : RP? — Cl, , € linear e satisfaz®

Y()y(w) +y(wy(v) = 29(v,u),  Vo,u e R
(ii) Se (Y,v') é outra dlgebra associativa unital e uma aplicagao ' : RP1 — Y satisfazy' (v)y' (u)+
v (w)y'(v) = 2g(v,u), entio existe um homomorfismo unico ¢ : Cl, o — Y tal que ' = ¢pory.

Sob a estrutura das algebras de Clifford, além da definigao classica de espinores como elementos
do espago que carrega a representagao irredutivel do grupo Spin (o grupo de Lorentz no caso do
espago de Minkowski), existe também a importante, embora menos popular, defini¢ido algébrica
[9]. Espinores algébricos sao ideais minimais & esquerda construidos a partir de idempotentes
primitivos da algebra base. Em geral, dada a algebra de Clifford C/,, ;, e um idempotente primitivo
f, os ideais minimos & esquerda tém a forma C¢, ,f. Além disso, um anel de divisdo K, isomorfo
a R, C ou H (reais, complexos e quatérnions), é obtido dependendo da dimensao e assinatura do
espaco, por meio de fClp, ,f. A aplicacdo

:Clpf XK — Cl,qf 1
(¢, a) = Y- a=1a, (1)

define uma estrutura de modulo & direita sobre K no espaco C¢, 4 f. Equipado com essa estrutura,
Clp qf ¢é chamado de espaco de espinores algébricos de Cl, 4, denotado por S, 4. Analogamente,
ideais minimais & direita podem ser construidos a partir de fC/, ;. O anel de divisdo e a estrutura
de modulo sobre K sao anédlogos para esses ideais. O espago de espinores algébricos dos ideais &
direita da algebra C/, , ¢ denotado por Sy . A acdo de um elemento de Sy , sobre S;, ; define uma
aplicagao linear cuja imagem ¢ o anel de divisao K. Além disso, S , é isomorfo ao espago das
aplicagdes lineares £(S, 4, K), motivando a introdugéo de produtos internos no espago de espinores
algébricos. Dessa forma, um produto interno 5 : S, ; x S, ; = K é definido associando um espinor
arbitrario ¢ € S, ; ao seu correspondente ¢* € S; , chamado de adjunto em relagao ao produto
interno 3, tal que (v, ¢) = ¢v*¢ € K.

Ideais & direita podem ser transformados em ideais & esquerda, e vice-versa, por involucoes da
algebra. No entanto, os idempotentes nao sao sempre preservados. Em outras palavras, denotando
uma involugdo genérica por «, tem-se que «(Clp.f) = a(f)Cly 4, mas, em geral, o(f) # f.

3Em geral, por simplicidade, a aplicagio de Clifford ¢ omitida e o produto de Clifford é denotado por justaposicao.
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Entretanto, sempre existe um elemento h € Cl,, tal que a(f) = h='fh e a(h) = h [6, 12|. Isso
permite definir ¥* = a(hy) = ha(1). Assim, um produto interno pode ser obtido por

B, d) = ha(Y)of € fClyof ~K. (2)

Onde « é a chamada de involugao adjunta do produto interno 5.

Ao lidar com algebras de Clifford complexificadas C ® C/, 4, a composicao da conjugagao
complexa com as outras involucoes algébricas altera a involugao adjunta dos produtos internos.
A situagao relevante para nos é a que a involugao adjunta é equivalente & conjugacao hermitiana
na representagio matricial da algebra. Para isso, é suficiente que a*(a) = h~ta'h e h' = h, para
qualquer a € C®Cl, 4 (em particular para a € C®S, 4) e h € C®Clp 4 [6, 12]. O espinor adjunto
(ou dual) ¥* € C®S; , é entao dado por

V* = ha*(¢) = ¥Th =[] (3)
Definindo h = A, com n' =7, segue que A deve satisfazer a condicao
Afn =nA. (4)

Isso impb6e uma vinculos importantes ao operador A. O caso particular do dual de Dirac, com
A =1, obviamente satisfaz (4). O dual alternativo de Dirac encontrado na Ref. [19], também
obedece & Eq. (4). Uma caracterizagao adicional do operador A pode ser encontrada tomando
uma matriz complexa geral A = [a;;] e impondo a Eq. (4), o que resulta em

aipr a2 a3 a4
A — a1 A22 GI4 054
asyr a2 ap; A9
azy Qa2 Qjy A3

, com ai3,a31, 024,042 € R. (5)

A matriz acima possui uma estrutura clara de matriz em blocos, que, como esperado, é compativel
com aquela encontrada em [3] e [19]. Ela pode ser representada como

A B
A [C’ AT},comB BeCl=C. (6)
Pode-se mostrar que o operador A nao afeta a invaridncia de Lorentz do produto interno, sendo
essa tarefa cumprida por n = 4° [20], evidenciando A como o tnico responsével pelos graus de
liberdade de um dual covariante de Lorentz geral.

3 Mapeamentos Duais e Estruturas Algébricas

Poderiamos agora explorar construgao dual da Sessao anterior, ou, alternativamente, a partir
do dual proposto em [3], definir um mapeamento dual que preserve toda a generalidade de A. Esse
serd o caminho seguido nessa Sessdo. Denotaremos esse mapeamento por 2. A principal vantagem
dessa abordagem é que, quando definido dessa maneira, algumas estruturas algébricas inesperadas
do conjunto de mapeamentos €2 sdo reveladas. A relacao entre A e ) é obtida definindo-se um
dual arbitrario do espinor, ¥*, de tal forma que:

P* = [ =yt = ¢Ty0Z0. (7)

Comparando as Eqs. (3) e (7), obtemos 7°A = Q7= ou, equivalentemente, A = 7°Q4°Z= e
Q) =4°A=4. Usando a equacio (4) segue a restricio fundamental para o mapeamento :

OF = 4P2FATH0 = 24990A = EA = 210402, (8)
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Agora estamos aptos a investigar a estrutura algébrica associada aos mapeamentos 2. A primeira
questao é a possibilidade de que um conjunto de mapeamentos {2 forme um grupo. Para isso, um
subconjunto de GL(4,C), que denotaremos genericamente por Gq, deve satisfazer as propriedades
de associatividade, conter a unidade, ser invertivel e satisfazer a propriedade de fechamento.

A associatividade decorre diretamente da algebra matricial. A unidade corresponde ao caso
A = =. A invertibilidade é garantida ao mostrar que, para um §2 invertivel que obedeca & Eq.

(8), vale a identidade (Q*l)Jr = Z7°Q714°Z. De fato, como QFf = Z4°Q4 =, obtemos (QT)_1 =

E4YQ~14%Z. Portanto, o resultado segue de (Q*l)Jr = (QT)fl. A propriedade de fechamento é
menos imediata e impoe uma restrigdo nos possiveis candidatos a Gg. De fato, dados 21 e Q9, a
Eq. (8) exige que (Qng)Jr = E790:Q97v°=. Por outro lado,

(209,)" = QIO = 24°0,7°25,°0,71°2 = 220,012, (9)

Comparando as duas equagoes, concluimos que 105 = 501, ou seja, Gg deve ser um subgrupo
abeliano de GL(4,C). A partir disso obtemos a restri¢do correspondente para A:

A1EALE = AyZAE. (10)

Como =2 =1, isso implica que A;ZA; = Ay=A;. Uma forma simples para a descricio mais geral
de G nao foi encontrada, apenas casos particulares que ilustram a estrutura algébrica adjacente,
como explicitado nas subsegoes a seguir.

3.1 Grupos Gg

Uma vez estabelecidas as condigbes para que Gq seja um grupo, podemos agora explorar alguns
casos particulares explicitamente. A forma matricial dos elementos abaixo, bem como algumas de
suas propriedades tuteis, sao apresentadas no Apéndice.

6(9)=6= 55 ("2 = g5 ("2+51°), FO.0)=F =g b5 =5 (’Z- =)
2
F(6.0906(¢) = FG = —[212), =) == =+"%", =) = = (E'=+1)5",

Trés estruturas de grupo sao identificadas ao observar as propriedades acima. Duas delas
sdo diretamente dadas por G = {I,G, F,FG} e G=t = {I,G,=,G=}, cujas tabelas de Cayley
sao apresentadas abaixo. Esses grupos sao isomorfos ao grupo classico de Klein K4. Apesar do
isomorfismo, Gr e G= sao topologicamente nao equivalentes, pois os parametros de Gz sao todos
compactos. O grupo restante, denotada por G, nao é de ordem finita como os anteriores. Ele é
gerada por {I,F,G,H,H '} e tem G como um subgrupo.

GrFr| I G F FG G=r | I G =1 =g
I I G F FG I I G = Efg
g g I FG F and g g I =tg =t
F|F F¢6 1 g =)=t =g 1 ¢

FG|FG¢6 F ¢ 1 =tg |=tg = g I

Tabela 1: Cayley tables for Gz = {I,G, F, FG} (left panel) and Gz = {I,G,Z", GE'} (right panel).
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3.2 Anéis de Grupo RGq

A linearidade da Eq. (8) garante que combinagoes de mapeamentos {2 também sido mapeamen-
tos €. Isso permite a defini¢do de uma estrutura mais ampla, a saber, a de anéis de de grupo [13,
15, 16]. A Eq. (8) também restringe os escalares da combinagao linear a pertencerem a R. Assim,
um elemento p do anel de grupo RG(, é representado na forma

uw= Z auyw, ag, €R. (11)

w € Go

Alguns anéis de grupo RGg, particulares sdo apresentados abaixo. Note que o determinante fornece
as condi¢oes sobre os coeficientes reais para que €) seja invertivel:

Q =al 4 b= + G + d=1G,
Go=G=i : A = bl + aZ + dG + c=3G, (12)
det[]] =(a+b—c—d)(a—b+c—d)(a—b—c+d)(a+b+c+d).

Q =al + bF + cG + dFG,
Go=Gr:{A = (al — bF + cG — dFG)Z, (13)
det[] =(a+b—c—d)(a—b+c—d)(a—b—c+d)(a+b+c+d).

Q =al+bF+cG+dFG+mH+hH?+ -+ F(fiH + foH?+ - )+
+G(H+ goH? + )+ FG(faH + foaH> + -+ )+ hoaH P+ hooH 2+
A =Efal+bF + ¢G + dFG+mH + hoH? + -+ F(LH + f2H?> +-- )+
TG (g H A+ goH 4 ) + FG(forH + fgoH? + - )+ haaH T+ hoH 2 4.

Gq =Gy

A possibilidade de mapeamentos {2 como elementos de anéis de grupo aumenta consideravelmente
a variedade de duais, mesmo para o conjunto bastante restrito de mapeamentos €) explicitamente
introduzido aqui. Tal possibilidade merece uma atengao cuidadosa em investigagoes futuras.

4 Consideracoes Finais

Neste trabalho, exploramos a estrutura algébrica de duais de espinores em algebras de Clifford,
estabelecendo as condigoes para que conjuntos de mapeamentos entre esses duais formem um
grupo. Além disso, introduzimos a formulagao desses mapeamentos dentro da estrutura de anéis
de grupo, apresentando casos particulares explicitamente. Até onde é de nosso conhecimento, esta
é a primeira aplicacao de anéis de grupo em teorias fisicas, o que abre novas possibilidades para a
analise de simetrias e transformagoes em espacos espinoriais. Esses resultados sugerem caminhos
promissores para investigacoes futuras, incluindo a aplicagao dessas estruturas a teorias quanticas
de campos e possiveis conexoes com extensoes do Modelo Padrao.
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Apéndice

Para maior clareza e conveniéncia, este apéndice apresenta explicitamente a forma matricial
dos termos utilizados ao longo da Segao 3.

0 0 0 —ie "
0 0 ie'® 0
G9(¢) = 0 —ie ™ 0 0 ’
ie'® 0 0 0
0 0 —sinf e “®cosb
0 0 e cos 0 sin 6
F(0,0) = . i
0.9) sin 0 —e " cosd 0 0 ’
—e*? cos 6 —sinf 0 0
psin e~ (E — pcosf) 0 0
=t _ 4 —e'®(E + pcos ) —psinf 0 0
T om 0 0 —psiné e (E+4pcosh) |’
0 0 —e'®(E — pcosf) psin 6
E? + 2pcos0E + p? 2e P Epsin § 0 0
2= 2¢'?Epsin 0 E? — 2pcosOE + p? 0 0
- 0 0 E? — 2pcosOE + p? —2e " “Epsin 0 ’
0 0 —2¢'®Epsin 0 E? 4 2pcos6E + p?
E2 — 2pcosOE + p? —2e “Epsin @ 0 0
01— —2e'?Epsin 6 E2 4 2pcos6E + p? 0 0
- 0 0 E2 + 2pcos OE + p? 2¢ " “Epsin 6 ’
0 0 2¢'?Epsin 0 E? — 2pcosbE + p?
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