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Abstract. Karstic geometries represent a distinct configuration characterized by the presence of
conduits/channels (or vugs/chambers) intertwined within a porous medium. Modeling flow through
such reservoirs poses a significant challenge, resulting in limited predictive capabilities regarding flow
and transport processes. In this work, we formulate a finite-volume-mass conservative treatment
for karst-matrix coupling. The designed scheme allows for handling complex geometrical karst
configurations that contain volume cells significantly smaller than the underlying matrix, thereby
increasing the applicability of the proposed model to the simulation of realistic karstified porous
media problems. The investigated model is applied to different porous media configurations, with
numerical results compared against reference solutions and verified by mass conservation evaluation.
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1 Introduction

Numerical modeling of flows in karstified porous media is challenging due to the coupled dy-
namics between conduit and matrix flows, which are governed by different physical mechanisms.
These challenges are exacerbated by the complex geometry of the conduit networks, the large
differences in spatial scales, the pronounced heterogeneity, and the data uncertainties. Reservoirs
differ in properties of their fluid systems, fractures, and cavity structures, thus exhibiting varied
permeability characteristics and fluid flow patterns [11]. Notably, the heterogeneity stemming from
conduit presence represents a crucial aspect to capture, as it can lead to varying degrees of resis-
tance or facilitation to flow, depending on the flow direction [1]. Quantification and prediction of
the hydromechanical behavior of these reservoirs pose significant challenges to the oil industry.

The modeling of karst also reaches its limits due to the lack of reliable geometric data and
the high computational effort required for discretization. An alternative approach is to use more
efficient models on coarser grids that can accurately reproduce the behavior of the original model.
For example, characteristic parameters of the geometry can be homogenized to simplify the grid
to one dimension. In addition, continuum formulations have been developed in which the mass
transfer component is constitutively given in the form of an exchange coefficient whose reciprocal
plays the rule of a conduction resistance multiplied by the pressure difference between the two
substructures [4].

In this study, we formulate a finite volume mass conservative treatment to numerically char-
acterize incompressible single-phase flows in karstified carbonate rocks within the embedded karst
region, using a model that couples 3D/1D flow systems. Our approach incorporates the concept of
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the Karst Index (KI) introduced by [8], and its application follows a similar methodology to that
of the Well Index outlined by [10] and further investigated by [1]. This framework offers several
advantages, including the use of experiment-specific parameters and the generation of individual-
ized coefficients for each cell, as opposed to applying a singular global value for each branch as
we performed in [7]. We perform simulations focusing on a slab geometry problem in a domain
Ω ⊂ R3, taking into account the presence of karst conduits with high permeability contrast relative
to the porous matrix.

The following section presents the mathematical and numerical formulations investigated in
this work. Numerical experiments and discussions are presented in Section 3. Finally, concluding
comments and suggestions for future work are made in Section 4.

2 Mathematical and Numerical Settings
The equations used in this study are consistent with those described in our previous publication

[7] and other recent works [5, 8], where the studied region, Ω, is a subset of R3 that includes
the conduit system, γ. The local hydrodynamics is determined by an elliptic system for porous
matrix (m) coupled with transfer conditions to the conduit (c). We study the flow of a single-
phase incompressible fluid in a carbonate matrix comprising a network of karst conduits, neglecting
gravitational and inertial effects for simplicity. Our goal is to derive approximations for the coupled
reduced model [3, 5, 8], finding the flux um(x) in the porous matrix, the average flux uc(s) within
the karst conduit, and the pressures pm(x) and pc(s), satisfying:





∇ · um =
KI

µ
(pc − pm)δcm + qδm, in Ω,

um = −Km

µ
∇pm, in Ω,

duc

ds
= − 1

Ac

KI

µ
(pc − pm), in γ,

uc = −Kc

µ

dpc
ds

, in γ.

(1)

Here, x ∈ Ω denotes the spatial matrix position, s ∈ γ is the coordinate along the conduit symmetry
line, q a source term, KI the karst index, µ the fluid viscosity, Km and Kc the permeabilities of
porous matrix and conduit, respectively. The δ correspond to Dirac function that impose line
sources: δcm for interface between matrix and conduit, and δm for external sources. Although the
cross-sectional area parameter Ac shown in Figure 2, we have reduced the dimensionality of the
conduit to 1D using a homogenization strategy described by [5]. We are therefore dealing with a
coupled 3D/1D flow system. The system described by equation (1) is completed by the boundary
conditions pm = gD on the left and right sides and um ·n = 0 on the other boundaries of Ω, where
gD represents an imposed pressure and n is the unitary normal pointing outwards to Ω.

Figure 1: Sketch of the lower dimensional model reduction of a karst conduit. Source: Authors.
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We have discretized the domain with a uniform Cartesian grid, as shown in Figure 2. Triangular
markers denote flux unknowns within Ω and on its boundary ∂Ω, while circles represent flux
unknowns along γ. The karst subdomain was discretized separately and integrated into the matrix
grid to ensure geometric stability and alignment.

Nodes Edges Orientations

Figure 2: Illustration of the discretized section of a 2D square domain. Source: Authors.

Based on the classical formulation of finite volume methods, the porous matrix equations of
system (1) were integrated over each volume element Vj of Ω. Equations associated with conduit
elements γk of the γ domain were discretized considering the three highlighted feature groups, as
shown in Figure 2. We associate the approximated divergence operator with the pressure unknowns
within the karst (edges). Flux equations are treated at the nodes, where the conservation condition
is imposed. This conservation is formulated by considering an intermediate pressure ph that acts
as a Lagrange multiplier. The semi-discretized equations are arranged as follows:

∫

∂Vj

umj
· n d∂Vj =

KI

µ
(pck − pmj

)|γk∩Vj
+ q(xj) (Mass conservation in Ω), (2)

∫

Vj

umj
dVj = −

∫

Vj

Keff

µ
∇pmj

dVj (Darcy’s law in Ω), (3)
∫

γk

duck

dsk
dγk = − 1

Ack

∫

γk

KI

µ
(pck − pmj

) dγk (Divergent equation in γ), (4)
∫

γk

uW
ck

dγk −
∫

γk

uE
ck

dγk = 0 (Mass conservation in γ), (5)
∫

γk

ũck dγk +

∫

γk

Kck

µ

dpck
dsk

dγk = 0, ũck ∈ {uW
ck
, uE

ck
} (Darcy’s law in γ). (6)

In equation (2), q(xj) ̸= 0 if xj ∈ Vj is a location that represents a point source; in equation
(3), Keff is the harmonic-mean permeability between the values in Vj and the adjacency Vjα ; in
equation (5), uW

ck
and uE

ck
are the average flux at nodes (see Figure 2). After the integration process

and the ordering of the terms, we obtain a linear system with the following matrix configuration:



Mmc Dm Mcm 0 0
Gm Hm 0 0 0
Mmc 0 Mcm 0 Dc

0 0 0 0 Dc

Bc 0 Nc Nh Hc







pm

um

pc

ph

uc



=




qm

0
0
0
0



, (7)

where Mmc, Mcm, Mmc and Mcm are the coupling matrices between Ω and γ; Dm and Dc are the
discretized divergence operators for matrix and conduit; Gm is the discretized gradient operator
for matrix; Hm and Hc are coefficients of the Darcy’s law that generate velocity connections for
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matrix and conduit; Dc is the block responsible for imposing the difference between fluxes at the
same node of the conduit to ensure mass conservation; Bc is the block that set the pressure at
the ends of the conduit; Nc and Nh have the function of performing a gradient operation between
pc(sk) and ph(sk±1/2); pm, pc and ph are the matrix, conduit and intermediate pressure vectors,
respectively; um is the vector of velocities components in the matrix and uc the vectors of average
fluxes in the conduit; qm is the source term for the matrix that we will consider null vector. Since
the values of the unknowns related to the karst depend on the unknowns associated with the rock
matrix, we consider boundary conditions where the pressure on this ends is equal to the pressures
of the matrix cells containing the ends of the karst.

Finally, to complete the Finite Volume Karst Flow formulation (denoted FVKF), KI is calcu-
lated as follows:

KI =
2AL

(Lm/Km) + (Lc/Kc)
, (8)

where AL is the contact area open to flow, Li is the block length, and Ki is the permeability,
i ∈ {c,m} [1].

3 Numerical Experiments

In the following simulations we consider the domain Ω = 1.0m × 1.0m × 0.1m, permeabilities
Kc = 3.38 × 10−7 m2 and Km = 3.38 × 10−12 m2, as adopted by [8], constant radius rc = 10−3 m
for the conduit, and dynamic viscosity µ = 8.9 × 10−4 Pa.s. We also set imposed gD = 100Pa at
the left boundary and gD = −100Pa at the right boundary.

As a reference solution for comparing the behavior of our results, we use a FEniCSx code [6]
for modeling a tridimensional domain containing a high-permeability cylindrical shape at a very
refined grid. In this more realistic approach, Darcy’s law models the fluid flow in the entire domain
(porous matrix and conduit), ΩT = Ω∪ γ, and leads to the variational finite element problem that
can be find in [2]. We also introduce the discrete Raviart-Thomas (RT) subspaces with degree 1
to ensure the velocity has continuos normal component. This spaces are used in combination with
the Discontinuos Galerkin (DG) with degree 0 as the space of functions for pressure field.

The results of our numerical experiments are shown in Figures 3-7, where we compare results
obtained by the FVKF formulation and the FEniCSx reference solution. Two configurations are
studied: a horizontal conduit case and an oblique conduit case.

Resulting slices produced considering a horizontal conduit that has ends at geometric posi-
tions (0.25, 0.55, 0.05) and (0.75, 0.55, 0.05) are shown in Figure 3. The permeability field and
discretized tridimensional FEniCSx domain illustrated in Figure 3 (left) exhibit the permeability
contrast of order 105 between the conduit and matrix. To capture the cylindrical region of highest
permeability in the reference solution, we impose a higher degree of refinement on the region con-
taining the conduit. The constructed unstructured mesh has 133817 elements. In turn, to apply
the finite volume formulation, the matrix domain was discretized with a structured and uniform
mesh with 90 × 90 × 1 computational cells, while the conduit domain considers a discretization
with 44 elements. Therefore, a total of 8144 elements compose the final FVKF discretized domain,
that contains over than 16 times fewer cells than the reference FEniCSx.

The resulting velocity fields yielded by FEniCSx and the FVKF formulation are presented in
Figure 3 (center) and (right). It is observed that the flow behavior obtained by the finite volume
formulation reproduces with good fidelity the situation taken as reference. Furthermore, the total
flux calculated over the domain boundaries produced a result of the order of 10−15, which infers
that the mass conservation mass was satisfied.

In the oblique case, with a similar development, we consider the conduit with ends in the
geometric positions (0.25, 0.25, 0.05) and (0.75, 0.75, 0.05), that is, a diagonal direction. Figure
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4 shows the slices produced, where the permeability field (left) remains with the same contrast of
order 105 between conduit and matrix. The discretized tridimensional FEniCSx domain considers
an unstructured mesh with 131497 elements, while the finite volume domain considers the same
matrix discretization with with 90×90×1 cells, and the conduit domain with 45 elements. Again,
the FVKF discretized domain contains about 16 times fewer cells than the reference FEniCSx.

Figure 3: Permeability field and discretized domain in FEniCSx for the horizontal conduit (left); Velocity
field obtained by FEniCSx (center); Velocity field obtained by FVKF (right). Source: Authors.

Figure 4: Permeability field and discretized domain in FEniCSx for the oblique conduit (left); Velocity
field obtained by FEniCSx (center); Velocity field obtained by FVKF (right). Source: Authors.

Once again, the flow behavior was captured with clear perception by the FVKF formulation,
which in addition, also presented mass conservation error in the order of 10−15. The levels of
permeability contrast for such binary fields are dominant when compared to cases with intermediate
values [9]. Thus, it is expected that FVKF works well for heterogeneous background permeability.

Respective pressure fields are shown in Figure 5, corroborating the good representation yielded
by FVKF when capturing the effects generated by the presence of the high permeability channel.
This conclusion is further reinforced by the curves shown in Figure 6, in which the pressure drop
that occurs at the ends of the channels is also well reproduced by the finite volume formulation.
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(a) (b) (c) (d)

Figure 5: Pressure field for the horizontal conduit obtained by (a) FEniCSx and (b) FVKF; Pressure field
for the oblique conduit obtained by (c) FEniCSx and (d) FVKF. Source: Authors.
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Figure 6: Pressure for the horizontal conduit (left), and for the oblique conduit (right). Source: Authors.

Finally, Figure 7 shows a continuous exchange of mass between the porous matrix and the
conduit through the interface that covers the lateral surface of the cylindrical region. These curves
were generated by applying the FVKF formulation. It is worth noting that the order of the values
for exchanges recorded (10−4), as well as, the order of the indices calculated by equation (8) (10−12)
are consistent with the values obtained in [3, 5, 8].
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Figure 7: Mass exchange: matrix and horizontal conduit (left); matrix and oblique conduit (right).
Source: Authors.
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4 Conclusions
With the experiments carried out, the flow behavior in both horizontal and oblique conduits

cases could be effectively represented. The structured and unstructured mesh approaches exhibited
excellent mass conservation, indicating that the solutions are reliable. In particular, the pressure
fields generated by the FVKF formulation closely match the expected pressure drops, which is a
further indication of the accuracy of the model. Moreover, the mass exchange analysis confirms a
consistent interaction between matrix and conduit, being the values consistent with the literature.
These results highlight the ability of the FVKF formulation to provide a good representation of
flow in karstified systems and it will be tested on more complex geometries in future work.
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