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Abstract. In this work, we develop a higher–order averaging approach, in the spirit of [1], to
detect canard tori in a general quadratic jerk system. By combining classical averaging techniques
with methods for the detection of torus bifurcations, we obtain a framework that we apply to a
three–dimensional quadratic jerk system exhibiting a zero–Hopf equilibrium. In this context, the loss
of stability of a periodic orbit leads to the emergence of a canard torus, which is rigorously detected
as a Neimark–Sacker bifurcation in the corresponding Poincaré map. We provide a precise statement
of the main result, together with a detailed computational scheme and numerical illustrations.
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1 Introduction
The detection of invariant tori of non-autonomous differential equations, especially when these

tori arise from a Neimark–Sacker bifurcation of a periodic orbit, play an importat role in the qua-
litative analysis of such systems. In some cases, this bifurcation gives rise to a canard phenomenon
in the sense described in [2]: trajectories passing through the internal region of the torus (the
region with negative curvature, near the z-axis) evolve on a slow time scale, whereas along the
external part of the torus (the region with positive curvature) they move much faster, forming a
structure that we refer to as a canard torus.

In this work, we focus on a class of quadratic jerk systems, that is, third–order differential
equations with quadratic nonlinearities, which naturally arise in mechanical and electronic models.
In previous work [3], averaging methods were used to detect periodic orbits and to study their
bifurcations. Here, we apply new techniques, based on the results of [1], to detect canard tori,
which emerge when a periodic solution loses stability as a bifurcation parameter varies.

Our approach is based on a two–parameter family of non-autonomous differential equations
written in the standard form

ẋ(t) =

k∑
i=1

εiFi(t,x;µ) + εk+1F̃(t,x;µ, ε), (1)

where the functions Fi are T–periodic in time and smooth in their arguments. Following the
general methodology of averaging theory, we construct an asymptotic expansion for the solutions
and the corresponding Poincaré map, whose first non–vanishing averaged function governs the
dynamics near the periodic orbit.

In Section 2, we review the main elements of the averaging approach and its connection with
torus bifurcation theory. Section 3 introduces the quadratic jerk system under consideration and
discusses the presence of a zero–Hopf equilibrium and its periodic orbit. Our main result on the
existence of a canard torus is stated in Section 4 and its proof is done in Section 5. Section 6 is

1mr.candido@unesp.br

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, v. 12, n. 1, 2026.

Trabalho apresentado no XLIV CNMAC, Fundação Getulio Vargas - Rio de Janeiro - RJ, 2025.

DOI: 10.5540/03.2026.012.01.0274 010274-1 © 2026 SBMAC

http://dx.doi.org/10.5540/03.2026.012.01.0274


2

devoted to numerical simulations that illustrate the theoretical findings. Finally, in Section 7 we
discuss further directions.

2 Preliminaries and Averaging Theory
We consider the non-autonomous system (1) with x ∈ Ω ⊂ R2, µ ∈ R, and ε > 0 small. The

classical averaging method constructs an approximate solution of the form

x(t, z; ε) = z+ εy1(t, z) + ε2y2(t, z) +O(ε3),

which is valid on time intervals of order O(1/ε). As a consequence, the associated Poincaré map
(with time–T section) can be written as

P (x;µ, ε) = x+ εg1(x;µ) + ε2 g2(x;µ) +O(ε3), (2)

where

g1(z;µ) =

∫ T

0

F1(τ, z;µ) dτ,

g2(z;µ) =

∫ T

0

[
F2(τ, z;µ) +

∂F1

∂x
(τ, z;µ)

∫ τ

0

F1(s, z;µ) ds
]
dτ.

These functions, known as the first and second order averaged functions, determine the bifurcation
structure of the fixed point ξ(µ, ε) of P .

In particular, assume that ξ(µ, ε) is given by

P
(
ξ(µ, ε);µ, ε

)
= ξ(µ, ε)

and that for ε = 0 one has ξ(µ, 0) = xµ. Suppose further that the Jacobian matrix DxP (ξ(µ, ε);µ, ε)
has a pair of complex–conjugate eigenvalues

λ(µ, ε) = 1 + ε
[
α(µ)± iβ(µ)

]
+O(ε2),

with α(µ0) = 0, β(µ0) = ω0 > 0 for some µ0. Then, if the first Lyapunov coefficient

ℓε1 = ε ℓ1,1 + ε2 ℓ1,2 +O(ε3) (3)

is nonzero, a Neimark–Sacker (torus) bifurcation occurs. The degree of attraction or repulsion of
the invariant circle in the Poincaré map is determined by the order of the first nonzero coefficient of
ℓε1, and we believe this plays a crucial role in the emergence of slow–fast dynamics. Consequently,
the bifurcating torus may exhibit canard behavior, meaning that trajectories can follow repelling
branches for extended periods, thereby forming a canard torus.

The rigorous computation of ℓ1,j , for j = 1, 2, is accomplished by applying a near-identity trans-
formation together with suitable changes of coordinates which, under appropriate non-resonance
conditions, reduce the system to its normal form, as discussed in [1].

3 Quadratic Jerk Systems and Canard Phenomena
Consider now the quadratic jerk system

dx

dt
= y,

dy

dt
= z,

dz

dt
= −a0 + a1x+ a2y + a3z + a4x

2 − a5xy − a6xz − a7y
2 − a8yz − a9z

2,

(4)
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with parameters ai ∈ R, 0 ≤ i ≤ 9, and with the assumptions

a4 > 0, ∆ = a21 − 4a0a4 > 0.

It is straightforward to verify that, under the conditions

a0 = − a21
4a4

, a3 = −a6a1
2a4

, a2 <
a1a5
2a4

,

the point

E0 =

(
− a1
2a4

, 0, 0

)
is a zero–Hopf equilibrium. Consequently, a periodic orbit emerges from E0, whose stability may
change as parameters vary. In our context, a change in the stability of the periodic orbit is followed
by the emergence of an invariant torus, which, due to it slow–fast behaviour in the jerk system, is
interpreted as a canard torus.

We now introduce a perturbative expansion of the parameters:

a0 =
a21,0
4a4,0

+ ε2s0 a3 =
a1,0a6,0
2a4,0

+ ε s3,

a1 = a1,0 + ε2s1 a4 = a4,0 + ε2s4,

a2 = a1,0 + ε s2 ak = ak,0 + ε sk, 5 ≤ k ≤ 9.

In accordance with the calculations presented in [3], the subsequent step involves transforming the
system. This modification provide new coefficients to the original system converting(4) into

du

dt
= −δv

dv

dt
= δu+ α1u

2 + α2vu+ α3wu+ α4(η)ϵu+ α5v
2 + α6wv + α7(η)ϵv + α8w

2 + α9(η)ϵw + · · ·

dw

dt
= β

[
α1u

2 + α2vu+ α3wu+ α4(η)ϵu+ α5v
2 + α6wv + α7(η)ϵv + α8w

2 + α9(η)ϵw
]
+ · · ·

where

δ =

√
a5,0a1,0
2a4,0

− a2,0 α4(η) = −a5,0η − s5a1,0 + 2s2a4,0
ξ

α8 = a4,0

α1 =
4a7,0a

2
4,0

ξ2
α5 =

a9,0ξ
4 − 4a6,0a

2
4,0ξ

2 + 16a54,0
ξ4

α9(η) = η

α2 = −
2a4,0

(
ξ2a8,0 − 4a24,0a5,0

)
ξ3

α6 =
a6,0ξ

2 − 8a34,0
ξ2

α3 = −2
a5,0a4,0

ξ
α7(η) =

a6,0ηξ
2 − 8ηa34,0 − s6a1,0ξ

2 + 2s3ξ
2a4,0

2ξ2a4,0

and (see [3]) we dropped terms that are not used in the following analysis.
Under these assumptions, the first order averaging method can be used to show that system

(4) possesses a unique limit cycle

φ(t;α9, ε) = (x(t;α9, ε), y(t;α9, ε), z(t;α9, ε))

for ε > 0 small emerging from the origin of coordinates.
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4 Main Result: Existence of a Canard Torus
The following theorem, adapted from Theorem B in [1], provides sufficient conditions for the

emergence of a torus via a Neimark–Sacker bifurcation in the averaged Poincaré map. The original
theorem is formulated in greater generality, taking into consideration the averaged function of
arbitrary order. Here, we present a simpler, but still robust, formulation, intended to be accessible
to readers of all backgrounds and easy to apply to their own problems. This theorem relies only on
the first and second averaged functions; nevertheless most applications of this results derive from
second-order analysis.

Theorem 4.1. Let l ∈ {1, 2} be the index of the first non–vanishing averaged function and assume
that the Poincaré map associated to the periodic orbit Φ(t;µ, ε) of system (4) can be written as

P (x;µ, ε) = x+ εg1(x;µ) + ε2 g2(x;µ) +O(ε3),

with fixed point ξ(µ, ε) such that ξ(µ, 0) = xµ. Suppose that:

(B1) The averaged functions satisfy gl(xµ;µ) = 0 for every µ in a small interval J0 and the
eigenvalues of Dxgl(xµ;µ) are given by α(µ)± iβ(µ) with α(µ0) = 0 and β(µ0) = ω0 > 0.

(B2) The transversality condition
dα(µ)

dµ

∣∣∣∣
µ=µ0

= d ̸= 0,

holds.

(B3) For each ε ∈ (0, ε1) the Jacobian DxP (ξ(µ, ε);µ, ε) has the expansion

DxP (ξ(µ, ε);µ, ε) = I + εA1 + ε2A2 +O(ε3),

with A1 and A2 in real Jordan form.

If the first Lyapunov coefficient

ℓε1 = ε ℓ1,1 + ε2 ℓ1,2 +O(ε3)

satisfies ℓ1,j∗ ̸= 0 for some j∗ ∈ {l, 2}, then there exists, for each ε > 0 sufficiently small, a C1

curve µ(ε) with µ(0) = µ0, and neighborhoods Uε ⊂ S1 × Ω and Jε ⊂ J0, such that:

1. For µ ∈ Jε with ℓ1,j∗(µ − µ(ε)) ≥ 0, the periodic orbit Φ(t;µ(ε), ε) is (un)stable (depending
on the sign of ℓ1,j∗) and no invariant torus exists in Uε.

2. For µ ∈ Jε with ℓ1,j∗(µ−µ(ε)) < 0, the system (4) admits a unique invariant torus Tµ,ε ⊂ Uε

surrounding Φ(t;µ, ε). Moreover, if ℓ1,j∗ > 0 (respectively, ℓ1,j∗ < 0), then Tµ,ε is unstable
(respectively, stable) and the periodic orbit is stable (respectively, unstable).

In the slow–fast regime, such an invariant torus, which bifurcates from a periodic orbit undergoing
a change in stability, is identified as a canard torus.

In addition, by performing an explicit computation of ℓ1,2 and a careful change of coordinates
(see the detailed computations in [1]), one obtains the expressions for the Lyapunov coefficient

ℓ1,2 = βδ2(α1 + α5)
(
48α2

8β
3(−7α1α3 + 4πα1α6 + α2α6 − 9α3α5 + 4πα5α6)

+ 16α8β
2(6α2α8(α1 + α5)− α6(3α3(α1 + 2α5) + 18πα6(α1 + α5)− 2α2α6))

+ α6β(α6(−7α1α3 + 12πα1α6 + α2α6 − 5α3α5 + 12πα5α6) + 64α2α8(α1 + α5))

− 6α2α
2
6(α1 + α5)

)
,
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and bifurcation parameter curve

µ(ε) =
2α7α8

α6
+ ϵ

α2
7α8

4α3
6βδ(α1 + α5)

(
2α8β

2(α1α3 + α2α6 − α3α5)

+ α6β(α1(α3 − 8πα6) + α2α6 − α5(α3 + 8πα6)) + 2α2α6(α1 + α5)

+ 4α2α8β(α1 + α5)) +O(ε2),

(5)

where ∆1 is given in terms of the system parameters. The sign of ℓ1,2(α9 − µ(ε)) then determines
the existence and stability of the canard torus.

5 Proofs and Computational Scheme
We briefly outline the steps used to derive the result of Theorem 4.1 for system (4). The aim of

this section is to provide the reader with a step-by-step guide to obtaining similar results in their
own problems. For a complete proof of Theorem 4.1 in a more general setting, we recommend [1].

Step 1. Reduction and Averaging: A reduction of system (4) to a planar form is achieved
by first performing a suitable coordinate transformation that isolates the center manifold corres-
ponding to the zero–Hopf equilibrium. The reduced system is expressed in the polar coordinates
(R,W ) and, after rescaling time (with θ as the new independent variable), one obtains a system
of the form

dR

dθ
= ε F1(θ,R,W ;α9) +O(ε2),

dW

dθ
= ε F2(θ,R,W ;α9) +O(ε2).

The associated Poincaré map, computed at time 2π, then takes the form (2) with averaged functions

g1(x;α9) = 2π (f1(R,W ), f2(R,W )),

and similarly for g2.

Step 2. Fixed Point and Linearization: The fixed point ξ(α9, ε) of the Poincaré map is
expanded as

ξ(α9, ε) = (R∗,W ∗) + ε (R1,W1) +O(ε2),

where (R∗,W ∗) is determined by the equation g1(R
∗,W ∗;α9) = 0. The linearization around this

fixed point yields eigenvalues that, by hypothesis, cross the unit circle when µ passes through µ(ε).

Step 3. Lyapunov Coefficient Computation: Using the near–identity transformation (see,
e.g., [1]), the first Lyapunov coefficient ℓε1 of the Poincaré map is computed. In the quadratic jerk
system, one finds that

ℓε1 = ε2 ℓ1,2 +O(ε3),

where ℓ1,2 is an explicitly determined function of the parameters αi, β, and δ. The sign of ℓ1,2 is
crucial for the subsequent bifurcation analysis.

Step 4. Verification of Hypotheses and Canard Behavior: Under hypotheses (B1)–(B3)
and the additional nondegeneracy condition on ℓ1,2, one applies the Implicit Function Theorem to
obtain the bifurcation curve (5). When α9−µ(ε) changes sign, the periodic orbit loses stability and
a canard torus emerges, capturing trajectories that follow both attracting and repelling regions.
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Step 5. Conclusion of the Proof: The final step is to apply a version of the Neimark–Sacker
bifurcation theorem (as stated in Theorem 4.1) to conclude the existence, uniqueness, and stability
properties of the bifurcating torus. Detailed computations of the change–of–coordinate matrices
and the averaged functions guarantee that the hypotheses are met, thus completing the proof.

6 Numerical Illustrations

To illustrate the theoretical results, we consider the following set of parameter values:

α1 = 1, α2 = −1, α3 =
397

4
, α4 = −1, α5 = 1, α6 = −1,

α7 = 1, α8 = 1, α9 =
512π − 174705

84000
, β =

1

64
, δ =

7

16
, ε =

1

750
.

Under these choices, numerical integration of system (4) shows that a limit cycle φ(t;µ(ε), ε) is
born at the zero–Hopf equilibrium, and as the parameter α9 is varied through µ(ε), an invariant
torus emerges. Figure 1 displays (a) a three–dimensional plot of the canard torus (solid line) along
with the underlying limit cycle (dashed line) and (b) the corresponding Poincaré section.

x y

z

(a) (b)

Figura 1: (a) Canard torus (solid) and limit cycle (dashed) in system (4). (b) Poincaré section
y = 0, x > 0 showing the attracting invariant closed curve corresponding to the canard torus.

Fonte: elaborado pelo autor.

The numerical results confirm that, for α9 − µ(ε) < 0 (or > 0, depending on the sign of ℓ1,2),
the periodic orbit is either stable or unstable, while the canard torus exhibits the complementary
stability property, in agreement with Theorem 4.1.

7 Discussion and Conclusions

In this paper we have applied the extended the averaging methodology developed in [1] to de-
tect a canard torus bifurcation in a quadratic jerk system. Our main contribution is the rigorous
identification of the parameter regime in which a periodic orbit loses stability via a Neimark–Sacker
bifurcation and a canard torus is born. The analysis required the computation of the averaged
Poincaré map up to second order, the verification of nonresonance conditions, and a careful calcu-
lation of the first Lyapunov coefficient.
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The detection of canard phenomena in three dimensional systems is of considerable interest,
and as far as we know this is the first analycal detection of this kind of phenomena for in quadratic
jerk systems. Our result also open the door to further investigaions into higher–dimensional and
more complex models.
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