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Abstract. Accurate modeling of complex systems often requires the application of advanced mathe-
matical tools. In this work, we investigate the thermodynamic behavior of monoatomic gases using a
stretched exponential probability density function. By constructing the partition function Z within
this framework, we derive expressions for the internal energy and temperature-dependent specific
heat of the system. The results are shown to be consistent with classical kinetic theory for ideal
gases. Furthermore, comparisons with experimental data are presented, highlighting the viability
of this approach.
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1 Introduction

Modeling complex systems that exhibit dynamics governed by power laws and non-Gaussian
Maxwell–Boltzmann distributions frequently necessitates the use of generalized statistical frame-
works. Among these, stretched exponential probability distributions (SEPD), also known as the
Kohlrausch–Williams–Watts (KWW ) functions, are widely recognized for their versatility in de-
scribing a broad array of physical phenomena [5]. Experimental studies have shown that these
functions effectively characterize relaxation processes across various systems, including biological
systems [3, 6, 13]. The presence of nonlinear energy dissipation supports the use of KWW -type
relaxation models. As discussed in Ref. [13], there is evidence suggesting that a universal mecha-
nism may underlie KWW dynamics, independent of the microscopic details of individual systems.
Moreover, connections have been established between the KWW law and Lévy-type stable proba-
bility distributions, which naturally arise from the superposition of numerous independent random
events with heavy-tailed distributions. For further insight into this relationship, Ref. [2] provides
valuable context, including applications related to system size and scaling effects, as elaborated
in Ref. [9]. KWW functions have proven particularly useful in the study of granular gases and
particulate systems, where inelastic collisions and dissipative dynamics drive the system far from
equilibrium. These systems, known as granular gases (GG), consist of dilute assemblies of particles
that deviate from the classical Maxwell–Boltzmann velocity distribution [12]. Instead, they often
exhibit stretched exponential velocity distributions [1] and can display collective behaviors such
as spontaneous cluster formation. It is also notable that granular media may behave as a hybrid
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between fluid and solid phases, effectively forming a multi-particle system with unique thermody-
namic properties [4]. In this study, we focus on deriving a temperature-dependent expression for
the specific heat of a monoatomic gas, grounded in a stretched exponential probability distribution
approach.

Granular gases and monoatomic real gases share fundamental similarities in their kinetic be-
havior, yet they differ significantly in the nature of their interactions. Both systems consist of
particles undergoing random motion and colliding with one another, making kinetic theory a use-
ful tool for their analysis. In monoatomic real gases, collisions are elastic, conserving energy and
momentum, and the particles interact through well-defined intermolecular potentials. In contrast,
granular gases are composed of macroscopic grains that undergo inelastic collisions, leading to
energy dissipation and requiring continuous energy input to maintain a steady state. Despite this
key difference, granular gases can often be modeled using adaptations of the Boltzmann equa-
tion, drawing formal analogies with molecular gases, especially in dilute regimes. Thus, while
granular gases deviate from thermodynamic equilibrium due to energy dissipation, their statistical
behavior under certain conditions can closely resemble that of monoatomic real gases.This possible
connection justifies the use of non-standard or specialized mathematical tools, such as deformed
derivatives, fractional calculus and stretched exponential.

2 Partition Function for Stretched Exponential Probability

To characterize the thermodynamic properties of the system, we adopt the SEPD framework.
Following the methodologies of Refs. [10, 11], but modifying for SEPD, the partition function Z
is given by:

Z =

∫
v

dνq1d
νq2...d

νqNdνp1d
νp2...d

νpNe−βHα

, (1)

. Here, β is the inverse Boltzmann factor, and the integration spans the generalized coordinates
and momenta qi, pi. V N is the volume and the exponent α characterizes the stretched exponential
form and will be better determined after some considerations.

With system’s Hamiltonian H(q1, ..., qn, p1, ..., pn, t) in a form of stretched exponential, the
partition function can be written explicitly as:

Z = V N

∫ +a

−a

exp

[
−β

(
1

2m

)α (
p21 + p22 + ...+ p2N

)α]
dpν1dp

ν
2 ...dp

ν
N . (2)

Again, as in Ref. [10], transforming to spherical coordinates in νN -dimensional momentum
space and calling p21 + p22 + ...+ p2N = p2, we obtain for Z,

Z =
2πνN/2

ΓνN/2
V N

∫ ∞

0

exp

(
− β

(2m)α
p2α

)
pνN−1dp . (3)

Using the substitution

u =
β

(2m)α
p2α −→ p =

[
(2m)α

β
u

]1/2α
, (4)

we derive:

du =
β

(2m)α
2αp2α−1dp . (5)

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

DOI: 10.5540/03.2026.012.01.0338 010338-2 © 2026 SBMAC

http://dx.doi.org/10.5540/03.2026.012.01.0338


3

By this way, we can write dp as

dp =
(2m)α

2αβ
p1−2αdu =

(2m)α

2αβ

[
(2m)α

β
u

]1− 2α

2α
du. (6)

The partition function, Z, can now be written as

Z =
πνN/2

ΓνN/2
V N

∫ ∞

0

e−u

[
(2m)α

β
u

](2ν−1)/2α
(2m)α

2αβ

[
(2m)α

β
u

]1− 2α

2α
du =

=
πνN/2

ΓνN/2
V N

[
(2m)α

β

](2ν−1)/2α
(2m)α

2αβ

[
(2m)α

β

]1− 2α

2α
∫ ∞

0

e−uu(2ν−1)/2αu1−2α/2αdu =

= C1(ν,N,α,m,β)

∫ ∞

0

e−uu(νN−1+1−2α)/2αdu = C1(ν,N,α,m,β)

∫ ∞

0

e−uu(νN−2α)/2αdu. (7)

In the eq.(7) we can identified the form of a gamma function Γ as

Γ(u) =

∫ ∞

0

e−uu( νN
2α −1)du. (8)

Following with the calculations, the prefactor in eq.(7) can be written, with some simple algebra
as

C1 ≡ C1(ν,N,α,m,β) =
(2m)(νN−2α)/2

β(νN−2α)/2α

(2m)α

2βα

(
πνN/2

Γ(νN/2)
V N

)
=

=
(2m)(νN)/2

2αβ(νN)/2α

(
πνN/2

Γ(νN/2)
V N

)
. (9)

Finally, Z can be cast as
Z =

(2m)(νN)/2

2αβ(νN)/2α

(
πνN/2V N

)
. (10)

Note that

νN

2α
> 0 =⇒ νN > 0 =⇒ N > 0, (11)

ensures physical ensure the validity of the solution, without the restrictions of poles in Plastino’s
papers [10, 11].

To calculate the mean energy ⟨U⟩,we proceed in a similar way, following Refs. [10, 11]: After
some tedious algebra explanation of the mean energy, we have the following.

⟨U⟩ =
C2(ν,N,α,m,β)

Z
Γ

(
νN + 2

2α

)
. (12)

Note that the argument of the gamma function is positive, that is

νN + 2

2α
> 0. (13)

In this way, it follows that νN + 2 > 0 =⇒ N > −2/ν =⇒ N > 0, for physical solutions. Again,
there are no the restrictions of poles (see Refs. [10, 11]).
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After some simple algebra, the term C2 can be written as

C2(ν,N,α,m,β) =
V N

2α

(2m)(νN)/2

β(νN+2)/2α

πνN/2

Γ

(
νN

2

) . (14)

Using a correction factor [7]
1

N !(2πℏ)νN
, (15)

we can rewrite the term C2 as:

C2 ≡ C2(ν,N,α,m,β) =
1

N !(2πℏ)νN
V N

2α

(2m)(νN)/2

β(νN+2)/2α

πνN/2

Γ

(
νN

2

) . (16)

Finally, the Helmholtz free energy can also be written as:

F = −kT lnZα = −KT

[
−lnN !− ln(2πℏ)νN + ln

(
πνN/2

)
+ ln

(
2mnuN )

2βν/2α

)
+NlnV

]
. (17)

2.1 The Internal Energy and Temperature-Dependent Specific Heat
Let us write explicitly the mean internal energy. With eq. (12) and eq.(10) written as Z =

C1Γ

(
νN

2α

)
,the internal mean energy can be written as

⟨U⟩ = C2

C1

Γ

(
νN + 2

2α

)
Γ

(
νN

2α

) , (18)

with C1 =
(2m)(νN)/2

2αβ(νN)/2α

(
πνN/2

Γ(νN/2)
V N

)
. By this way,

C2

C1
is identified as

C2

C1
=

βνN/2

β(νN+2)/2
= β

νN − νN − 2

2α = β−1/α. (19)

The internal mean energy of the system is then explained as

⟨U⟩ = β−1/α

Γ

(
νN + 2

2α

)
Γ

(
νN

2α

) . (20)

It is possible to give a one parametric equation for the specific heat CV , that we will show in
what follows that depends on the temperature.

Performing a partial derivative on the mean energy, the CV can now be written as

CV =
∂⟨U⟩
∂T

=
∂

∂T

β−1/α

Γ

(
νN + 2

2α

)
Γ

(
νN

2α

)
 , (21)
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or

CV =
K1/α

α
T (1−α)/α

Γ

(
νN + 2

2α

)
Γ

(
νN

2α

) , (22)

where K is the Boltzmann constant. The parameter α is an experimental fractal parameter and
depends on the composition of the system under study.

To perform the simulation, we will use the Stirling’s formula, that allows derivation of the
following asymptotic expansion for the ratio of gamma functions:

Γ(x+ c)

Γ(x)
≈ xc. (23)

With Stirling approximation, the equation (22) can be rewritten as

CV ≈ K1/α

α
T (1−α)/α

(
νN

2α

)1/α

(24)

In order to better emulate the nature of a real gas, let us redefine the parameter α as α = 2−η.
The equation (22) can be written now as

CV ≈ K1/(2−η)

2− η
T (η−1)/(2−η)

(
νN

2− η

) 1
(2−η)

. (25)

As shown in Ref. Ref. [7] (Table 1, column 3), the specific heat at constant volume, CV , for
the noble gas Argon (Ar), exhibits a low degree of fractionality, α, meaning that α is very close to
one. This suggests that the appropriate framework for describing the thermodynamics of granular
systems such as noble gases is not nonlocal fractional calculus (FC), but rather local and simpler
alternatives, such as fractal (or deformed) derivatives.

Here, α and η are purely dimensionless parameters.
Additional values for CV are provided in Ref. [8].
In Figure (1) we present the experimental data from Ref. [8], along with a fit using eq. (25)

for CV . The results show good agreement with the experimental data, except at low temperatures
where quantum effects become significant and the model would require revision.

2.2 Consistence with Classical Approach of Kinetic Theory

Let us now examine the consistence of the relations obtained here with those of the classical
kinetic theory approach. For this intention, let us make the parameter α tend to 1, α → 1 : In this
case

Cv → K
νN

2
, (26)

where we have used that, for gamma function, is valid the relation Γ (x+ 1) = x.Γ (x) .
For 3D gas, that is, for ν = 3, the specific heat turns out to be the well known classical one for

the ideal gas,

Cv =
3

2
NK, (27)
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Figure 1: CV .vs. T for one adjusted η parameter. Experimental data for Argon (Ar) by Ref. [8].

and the internal mean energy is

⟨U⟩ = KT
νN

2
. (28)

When ν = 3,

⟨U⟩ = 3

2
NKT, (29)

that is the well known equipartition principle for classical ideal gases.

3 Conclusions and Final Considerations
In terms of the stretched exponential function, we calculate the partition function Z for a

monoatomic gas system by building up the probability density and, from this partition function,
we determine the internal energy of the system as well as the specific heat CV , both dependent
on temperature T . Comparisons with experimental data from [8] for Argon have shown good
accordance above 250K. For low temperature experiments, a quantum model is necessary as in
Einstein-like model.
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