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Resumo. A analise da resposta forgada de vigas é essencial em areas como engenharia civil,
mecanica e aeroespacial, nas quais a vibracao pode afetar o desempenho ou até mesmo a durabilidade
das estruturas. Na engenharia de méaquinas, por exemplo, vigas em sistemas de transmissao podem
sofrer vibracoes devido a forcas de excitagdo que podem ser aleatdrias, impulsivas ou periddicas.
Neste trabalho, considera-se um sistema composto por duas vigas de Euler-Bernoulli acopladas por
uma camada viscoelastica e sujeitas a uma camada elastica. A resposta forgada é obtida em termos
da solugdo fundamental associada ao sistema. A solugdo fundamental, por sua vez, é expressa em
fungdo das frequéncias naturais e dos modos de vibragdo. Cada modo de vibragdo esta associado
a uma frequéncia natural e apresenta uma forma caracteristica de vibrar. A obtengdo de uma
condicdo de ortogonalidade entre os modos de vibragao é imprescindivel para o calculo da resposta
forcada, pois permite o desacoplamento do sistema.
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1 Introducao

Determinar a resposta forgada de vigas é um tema fundamental em diversos campos da en-
genharia, pois permite compreender a dindmica das estruturas e evitar falhas futuras. Quando
uma forga externa é aplicada a um sistema mecénico, a resposta obtida depende de varios fatores,
como a modelagem matemética, os métodos utilizados para a resolugao, os parametros adotados,
as condigbes de contorno, entre outros. Compreender o comportamento dindmico de uma viga é
essencial para garantir a seguranca e a estabilidade do sistema.

O objetivo deste trabalho é determinar a resposta forgada, por meio da solu¢do fundamental,
de um sistema formado por duas vigas de Euler-Bernoulli, paralelas, de mesmo comprimento,
conectadas por uma camada viscoelastica e apoiadas sobre uma fundacao elastica. A solugao
fundamental matricial associada ao problema é utilizada para formular a equagao caracteristica,
obter as frequéncias naturais, determinar a solugao da equagao modal e, por fim, calcular a resposta
forgada, que é dada pela convolugao entre a solugao fundamental e o forgante.

A obtengao das frequéncias naturais é crucial para evitar o fendmeno da ressonancia, que ocorre
quando a frequéncia de entrada coincide com uma das frequéncias naturais da viga, amplificando a
resposta do sistema. A cada frequéncia natural esta associado um modo de vibragao caracteristico
dessa frequéncia. Determinar uma condigao de ortogonalidade entre os modos de vibragao permite
desacoplar o sistema de equagoes e, assim, obter a resposta forcada.

Sao realizadas simulages para determinar as frequéncias naturais, os modos de vibragao e a
resposta forcada do sistema.
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2 Formulacao do Modelo

O sistema matricial que descreve o deslocamento transversal de um problema dado por duas
vigas Euler-Bernoulli acopladas viscoelasticamente e sobre uma fundagao eléastica, conforme Figura
1, pode ser descrito, na forma matricial evolutiva, como
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Figura 1: Viga dupla Euler-Bernoulli. Fonte: autora.

onde u(t,z) e F(t,x) sdo vetores 2 X 1, e M,C e K sao matrizes 2 x 2, dadas, respectivamente,

por
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Observe que M e C sao matrizes constantes, enquanto K é um operador espacial matricial
de quarta ordem. As equagoes de equilibrio que descrevem o modelo foram obtidas por meio da
aplicagao do principio de Hamilton. Para mais detalhes, consulte as referéncias [4, 5].

1=1 indica a viga superior i=2 indica a viga inferior

t: unidade temporal, t > 0 x: unidade espacial, 0 < z < L

L: comprimento das vigas u;(t,z): deslocamento transversal da viga
p;i: densidade linear de massa A;: area da secao transversal

k: elasticidade da camada viscoelastica c¢: amortecimento da camada viscoelastica
FE;: modulo de elasticidade de Young I;: momento de inércia

fi(t,z): for¢a externa aplicada k¢: constante da fundagao elastica

3 Analise Modal e Solugao Fundamental

Consideremos que o sistema descrito pela equagao (1) é excitado harmonicamente com frequén-
cia w, entdo podemos supor uma solucao da forma

u(t,r) = eMo(z), A=wl, IT=+-1, (4)
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onde v(z) = ( V1 U2 )T é o0 modo de vibragao associado a frequéncia w. Substituindo a proposta
de solugao na equagao (1), resulta

Av™) (z) + (=A2M — A\C + B)v(z) =0, (5)

onde 0 é o vetor nulo de ordem 2 x 1, e o operador K em equagao (3), foi decomposto como soma
de dois operadores

04

xr
com (—EL 0 ok k
A—( 0 —E212>’ B‘( K —k—kf>' @

A equagao (5) é conhecida como equagado modal e sua soluc¢do, usando a solugdo fundamental
matricial [2], h(z), pode ser escrita como

v(z) = h(z)e; + h'(z)es + ' (z)es + b (v)es = Pe, (8)

onde
h11 (Z‘) hlg(.ﬁ)

_ / " " _
P = ( h(z) h'(x) h"(z) h"(x) ), h(z) = ( his(x) hua(z) ) , 9)
T T
e= ( e; e ez ey ) e e = ( €j1 ej2 ) , (10)
e é um vetor determinado pelas condigoes de contorno e j = 1,2,3,4. A solugao fundamental

matricial h(z) é solugdo do problema de valor inicial

AR (z) + (=A\2M — AC + B)h(z) = 0,

h(0) =0, h'(0) =0, h"(0) =0, AR (0) =1. (11)

O uso da solugao fundamental simplifica a forma dos modos e também a equagao caracteristica, e
pode ser obtida através da formula fechada [2],

4N j—1

=D bidV T @) han—y), (12)

7=1 =0

onde os b;’s s@o os coeficientes do polindmio P(s), hy, é a solugdo da equagdo matricial em diferengas
e d(z) é solucdo do problema de valor inicial, dados, respectivamente por

P(s) = det(As* + (=AM — \C + B) = Zb g0 (13)
by (XM = AC + Bl =0, by () + by (@) ok by () =0,
hp=0, h; =0, hy=0 Ahs=1, d(0)=0, d/(O) =0, ..., bpd®N~ )(0) — 1

4 Condicoes de Contorno e Equacao Caracteristica

As condigoes de contorno gerais, classicas ou nao classicas, podem ser escritas na forma matricial

Av(0) + Bjv'(0) + CY "(O)JFDO "(0) =0,

Agv( ) (0) v 0) 0 /H( ) =0, (14)
Aro(L) + (L) T’ (L) +DL "(L) =0,
Azv(L) + B3v'(L) + L v"(L) + L v (L) =0,
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onde para z = 0,L e i = 1,2, temos

:_ (a5 O =_(bh O s_ (¢ 0 z _ a0
Ai_(o afz)’Bi_<O b G = 0 ¢ e bi= 0 di ) (15)

Substituindo v(z), dado pela equagao (8), na equacao (14), aplicando as condigdes de contorno
especificas para cada caso considerado, bem como as condigoes iniciais do problema de valor inicial
apresentadas na equagao (11), obtemos o sistema:

BHje = 0, (16)

em que a matriz B (8 X 16) contém as informagoes referentes as condigoes de contorno, a matriz H
(16 x 8) representa a base de solugdes gerada pela solu¢do fundamental nos pontos t =0e x = L,
T - .
e = ( e; ey e3 ey ) e 0 s@o vetores (8 x 1) de constantes e vetor nulo, respectivamente.
Observe que a matriz H = HZ()\). Solugdes ndo nulas para BH} e = 0 sdo encontradas, quando
det(BHY) = 0. Esta equagdo ¢ denominada equagao caracteristica.
Para o caso particular de um sistema composto por duas vigas fixas em z = 0 e livres em « = L,
as condigoes de contorno sao:
Ou; 0%u u

ui(t,0) =0, —(t,0) =0, Elaz(tL) 0, E]ag(

Substituindo as condigoes de contorno na equagéo (8) para x = 0, e usando as condigoes iniciais da

equagao (11), temos v(0) = v’(0) = 0, de modo que ez = e4 = 0 na equacao (8). Assim, a forma
dos modos é simplificada para v(z) = h(x)e; +h'(z)es. Finalmente, a equagio caracteristica para
a viga dupla fixa-livre Euler-Bernoulli com camada viscoeléstica e sobre uma base elastica, é:

h”(L) h///(L) B
det( h///(L) h(iv)(L) ) = 0. (18)

t,L) = 0. (17)

5 Resposta Forcada

A solugao forgada para o problema pode ser expressa por meio da integral [3],

t L
u(t,z) = /0 /0 h(t — 7,2,€)F(r, €)dédr, (19)

onde h(t,z,¢) é uma matriz 2 x 2 denominada resposta fundamental matricial, e F'(¢,z) é o vetor
forga externa definido na equagao (3). Para a determinar a matriz h(t,z, &), escreve-se:

u(t,x) =y vl (@)n;(1), (20)
§j=0

onde n;(t) sdo coeficientes temporais a serem determinados e v’(z) = [v](z), v3(z)]T sdo os j-
ésimos modos de vibracdo do sistema. A resposta forcada serd determinada para o sistema nao
amortecido. Como M é uma matriz simétrica e definida positiva e K é uma matriz simétrica, as

condigoes de ortogonalidade entre os modos de vibragdo sdo dadas por [1]:

(Kvi (z),v'(z)) = / (07T (x)dx{ 33 I (21)

) Z:j’

(Mv(z),v"(2)) = / (v ()dx:{(l) ’ Zi]’ , (22)

) 7’_],
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onde w;, i = 1,2,...,n sao as frequéncias naturais do sistema.
Substituindo (20) em (1), com C = 0, multiplicando a esquerda a equagdo resultante por
(v7)T(z), integrando de 0 a L e usando as equagdes (21) e (22), segue o sistema desacoplado,

L
i (t) + win;(t) = G;(t), onde Gi(t):/o ()T (2)F(t,x)dx, i =1,2, ... (23)

A solugao da equagao (23), considerando condigdes iniciais nulas, 1;(0) = 0 e 7;(0) =0, é

ni(t) = / hat — 7)Gi(r)dr, (24)

onde h;(t) é a resposta fundamental temporal, solugdo do problema de valor inicial

. . in(w;t .
hi(t) + w2hi(t) =0, hy(0) =0, h;(0)=1, dada por haty = SR a5 (25

Wi

Substituindo (25) e (23) em (24) e depois (24) em (20), obtém-se

t L
ult,z) = /0 /0 h(t — 7,2,€)F(r, €)dédr, (26)

com a matriz h(t,z, ), 2 x 2, dada por
h(t,z,8) =Y hi(t)v' (z)(v")" () (27)
i=1

A partir da equagao(26), a resposta forcada da primeira e da segunda viga pode ser expressa pelas
seguintes integrais:

t L
w(t, ) = / / (har(t — 7,2, €) Fo (7€) + ha(t — 7,2, €) fo(r, €))dédr, (28)

t L
u(t,z) = / / (har(t — 7.2,€) f1(r,€) + haa(t — 7,2, €) (. £)dEdr. (20)

6 Simulacoes

A seguir, sao realizadas algumas simulacdes, com os seguintes pardmetros p; = ps = p = 2x 103
kgm_3,Al:Ag:A:BXlO_QmQ,m:pA,El:Eg:E:leOlon_2,Il:Ig:]:
4x107%m* k=1 x 10°Nm~2, ¢ =8 x 10°Nm/s, k; = 2,5 x 10°Nm~2 e L = 10m [4].

Com o objetivo de observar os efeitos dos parametros de massa e rigidez no comportamento das
frequéncias e nos modos de vibracao foram considerados trés casos distintos. Em todos os casos
as duas vigas sao fixas em x = 0 e livres em = = L, de modo que a equagao caracteristica é dada
pela equagao (18).

Na Tabela 1 sao apresentados as seis primeiras frequéncias naturais w; para os trés casos
considerados. Na Figura 6, sao mostrados os quatro primeiros modos de vibragao, e na Figura 3,
a resposta for¢ada correspondente as excitagdes f1 =4 e fo = 200 sen(2t).

CASO 1: Elll = EQIQ, p1A1 = p21427
CASO 2: Elll = QEQIQ, PlAl = 2p2A2,
CASO 3: 2E1[1 = EQIQ, 2p1A1 = pgAg.
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8
o

Modos de vibragdo

°
N

Tabela 1: Frequéncias naturais.

Caso 1 Caso 2 Caso 3
w1 31,7728 31,7846 31,7479
wo 53,8715 53,8784 53,8568
w3 127,2249 127,2283 114,4188
Wy 161,5888 226,9420 122,3881
ws 167,3508 261,6454 127,2384
we 204,8892 326,2969 168,1821

— Viga superior —— Viga infcrior‘

(a) Primeiro modo wy

‘* Viga superior —— Viga inferior‘

(b) Segundo modo ws

Modos de vibragdo
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(¢) Terceiro modo ws

Modos de vibragdo
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Figura 2: Quatro primeiros modos de vibragao para w;, @ = 1..4. CASO 3. Fonte: autora.
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Resposta Forcada

‘—Viga superior—— Viga inferior‘

Figura 3: Resposta forgada para a Viga dupla Euler-Bernoulli. Fonte: autora.
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7 Consideragoes Finais

Obter a resposta forcada de vigas desempenha um papel essencial no projeto e na avaliagao
de estruturas sujeitas a forcas externas. Por meio da anéalise modal, foram obtidas a equagao
caracteristica, as frequéncias naturais e os modos de vibragao do sistema considerado. A solugao
fundamental foi empregada para simplificar a forma dos modos, determinar as frequéncias naturais
e expressar a resposta forcada, ampliando assim a classe de problemas que podem ser resolvidos
por meio dessa abordagem. Destaca-se a importancia da condigao de ortogonalidade entre os mo-
dos de vibragao no desacoplamento das equacgoes utilizadas para determinar a resposta forcada.
Para sistemas amortecidos, torna-se necessario estabelecer uma condigao de ortogonalidade entre
os modos do problema direto e os modos do problema adjunto associado. As simulagoes reali-
zadas mostraram-se satisfatorias, indicando que o método adotado representa adequadamente o
comportamento estrutural da viga.
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