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Resumo. A análise da resposta forçada de vigas é essencial em áreas como engenharia civil,
mecânica e aeroespacial, nas quais a vibração pode afetar o desempenho ou até mesmo a durabilidade
das estruturas. Na engenharia de máquinas, por exemplo, vigas em sistemas de transmissão podem
sofrer vibrações devido a forças de excitação que podem ser aleatórias, impulsivas ou periódicas.
Neste trabalho, considera-se um sistema composto por duas vigas de Euler-Bernoulli acopladas por
uma camada viscoelástica e sujeitas a uma camada elástica. A resposta forçada é obtida em termos
da solução fundamental associada ao sistema. A solução fundamental, por sua vez, é expressa em
função das frequências naturais e dos modos de vibração. Cada modo de vibração está associado
a uma frequência natural e apresenta uma forma característica de vibrar. A obtenção de uma
condição de ortogonalidade entre os modos de vibração é imprescindível para o cálculo da resposta
forçada, pois permite o desacoplamento do sistema.
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1 Introdução

Determinar a resposta forçada de vigas é um tema fundamental em diversos campos da en-
genharia, pois permite compreender a dinâmica das estruturas e evitar falhas futuras. Quando
uma força externa é aplicada a um sistema mecânico, a resposta obtida depende de vários fatores,
como a modelagem matemática, os métodos utilizados para a resolução, os parâmetros adotados,
as condições de contorno, entre outros. Compreender o comportamento dinâmico de uma viga é
essencial para garantir a segurança e a estabilidade do sistema.

O objetivo deste trabalho é determinar a resposta forçada, por meio da solução fundamental,
de um sistema formado por duas vigas de Euler-Bernoulli, paralelas, de mesmo comprimento,
conectadas por uma camada viscoelástica e apoiadas sobre uma fundação elástica. A solução
fundamental matricial associada ao problema é utilizada para formular a equação característica,
obter as frequências naturais, determinar a solução da equação modal e, por fim, calcular a resposta
forçada, que é dada pela convolução entre a solução fundamental e o forçante.

A obtenção das frequências naturais é crucial para evitar o fenômeno da ressonância, que ocorre
quando a frequência de entrada coincide com uma das frequências naturais da viga, amplificando a
resposta do sistema. A cada frequência natural está associado um modo de vibração característico
dessa frequência. Determinar uma condição de ortogonalidade entre os modos de vibração permite
desacoplar o sistema de equações e, assim, obter a resposta forçada.

São realizadas simulações para determinar as frequências naturais, os modos de vibração e a
resposta forçada do sistema.
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2 Formulação do Modelo

O sistema matricial que descreve o deslocamento transversal de um problema dado por duas
vigas Euler-Bernoulli acopladas viscoelasticamente e sobre uma fundação elástica, conforme Figura
1, pode ser descrito, na forma matricial evolutiva, como

M
∂2u

∂t2
+C

∂u

∂t
+Ku = F (t, x), (1)

Figura 1: Viga dupla Euler-Bernoulli. Fonte: autora.

onde u(t, x) e F (t, x) são vetores 2× 1, e M ,C e K são matrizes 2× 2, dadas, respectivamente,
por:

u(t, x) =

(
u1(t, x)
u2(t, x)

)
, F (t, x) =

(
f1(t, x)
f2(t, x)

)
, M =

(
ρ1A1 0
0 ρ2A2

)
, (2)

C =

(
c −c
−c c

)
e K =

 E1I1
∂4

∂x4
+ k −k

−k E2I2
∂4

∂x4
+ k + kf

 . (3)

Observe que M e C são matrizes constantes, enquanto K é um operador espacial matricial
de quarta ordem. As equações de equilíbrio que descrevem o modelo foram obtidas por meio da
aplicação do princípio de Hamilton. Para mais detalhes, consulte as referências [4, 5].

i=1 indica a viga superior i=2 indica a viga inferior
t: unidade temporal, t > 0 x: unidade espacial, 0 < x < L
L: comprimento das vigas ui(t, x): deslocamento transversal da viga
ρi: densidade linear de massa Ai: área da seção transversal
k: elasticidade da camada viscoelástica c: amortecimento da camada viscoelástica
Ei: módulo de elasticidade de Young Ii: momento de inércia
fi(t, x): força externa aplicada kf : constante da fundação elástica

3 Análise Modal e Solução Fundamental

Consideremos que o sistema descrito pela equação (1) é excitado harmonicamente com frequên-
cia ω, então podemos supor uma solução da forma

u(t, x) = eλtv(x), λ = ωI, I =
√
−1, (4)
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onde v(x) =
(
v1 v2

)T é o modo de vibração associado à frequência ω. Substituindo a proposta
de solução na equação (1), resulta

Av(iv)(x) + (−λ2M − λC +B)v(x) = 0, (5)

onde 0 é o vetor nulo de ordem 2× 1, e o operador K em equação (3), foi decomposto como soma
de dois operadores

K = −A
∂4

∂x4
−B, (6)

com A =

(
−E1I1 0

0 −E2I2

)
, B =

(
−k k
k −k − kf

)
. (7)

A equação (5) é conhecida como equação modal e sua solução, usando a solução fundamental
matricial [2], h(x), pode ser escrita como

v(x) = h(x)e1 + h′(x)e2 + h′′(x)e3 + h′′′(x)e4 = Φe, (8)

onde
Φ =

(
h(x) h′(x) h′′(x) h′′′(x)

)
, h(x) =

(
h11(x) h12(x)
h13(x) h14(x)

)
, (9)

e =
(
e1 e2 e3 e4

)T e ej =
(
ej1 ej2

)T
, (10)

e é um vetor determinado pelas condições de contorno e j = 1, 2, 3, 4. A solução fundamental
matricial h(x) é solução do problema de valor inicial

Ah(iv)(x) + (−λ2M − λC +B)h(x) = 0,
h(0) = 0, h′(0) = 0, h′′(0) = 0, Ah′′′(0) = I.

(11)

O uso da solução fundamental simplifica a forma dos modos e também a equação característica, e
pode ser obtida através da fórmula fechada [2],

h(x) =

4N∑
j=1

j−1∑
i=0

bid
(j−1−i)(x)h(4N−j), (12)

onde os bi’s são os coeficientes do polinômio P (s), hk é a solução da equação matricial em diferenças
e d(x) é solução do problema de valor inicial, dados, respectivamente, por

P (s) = det(As4 + (−λ2M − λC +B) = 0 =

4N∑
i=0

bis
4N−i, (13)

Ahk+4 + (−λ2M − λC +B)hk = 0, b0d
4N (x) + b1d

4N−1(x) + ...+ b4Nd(x) = 0,
h0 = 0, h1 = 0, h2 = 0 Ah3 = I, d(0) = 0, d

′
(0) = 0, ..., b0d

(4N−1)(0) = 1.

4 Condições de Contorno e Equação Característica
As condições de contorno gerais, clássicas ou não clássicas, podem ser escritas na forma matricial

A0
1v(0) +B0

1v
′(0) +C0

1v
′′(0) +D0

1v
′′′(0) = 0,

A0
2v(0) +B0

2v
′(0) +C0

2v
′′(0) +D0

2v
′′′(0) = 0,

AL
1 v(L) +BL

1 v
′(L) +CL

1 v
′′(L) +DL

1 v
′′′(L) = 0,

AL
2 v(L) +BL

2 v
′(L) +CL

2 v
′′(L) +DL

2 v
′′′(L) = 0,

(14)
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onde para z = 0, L e i = 1, 2, temos

Az
i =

(
azi1 0
0 azi2

)
, Bz

i =

(
bzi1 0
0 bzi2

)
, Cz

i =

(
czi1 0
0 czi2

)
e Dz

i =

(
dzi1 0
0 dzi2

)
. (15)

Substituindo v(x), dado pela equação (8), na equação (14), aplicando as condições de contorno
específicas para cada caso considerado, bem como as condições iniciais do problema de valor inicial
apresentadas na equação (11), obtemos o sistema:

BHL
0 e = 0, (16)

em que a matriz B (8×16) contém as informações referentes às condições de contorno, a matriz H
(16× 8) representa a base de soluções gerada pela solução fundamental nos pontos x = 0 e x = L,
e =

(
e1 e2 e3 e4

)T e 0 são vetores (8 × 1) de constantes e vetor nulo, respectivamente.
Observe que a matriz HL

0 = HL
0 (λ). Soluções não nulas para BHL

0 e = 0 são encontradas, quando
det(BHL

0 ) = 0. Esta equação é denominada equação característica.
Para o caso particular de um sistema composto por duas vigas fixas em x = 0 e livres em x = L,

as condições de contorno são:

ui(t, 0) = 0,
∂ui

∂x
(t, 0) = 0, EiIi

∂2ui

∂x2
(t, L) = 0, EiIi

∂3ui

∂x3
(t, L) = 0. (17)

Substituindo as condições de contorno na equação (8) para x = 0, e usando as condições iniciais da
equação (11), temos v(0) = v′(0) = 0, de modo que e3 = e4 = 0 na equação (8). Assim, a forma
dos modos é simplificada para v(x) = h(x)e1+h′(x)e2. Finalmente, a equação característica para
a viga dupla fixa-livre Euler-Bernoulli com camada viscoelástica e sobre uma base elástica, é:

det

(
h′′(L) h′′′(L)

h′′′(L) h(iv)(L)

)
= 0. (18)

5 Resposta Forçada
A solução forçada para o problema pode ser expressa por meio da integral [3],

u(t, x) =

∫ t

0

∫ L

0

h(t− τ, x, ξ)F (τ, ξ)dξdτ, (19)

onde h(t, x, ξ) é uma matriz 2× 2 denominada resposta fundamental matricial, e F (t, x) é o vetor
força externa definido na equação (3). Para a determinar a matriz h(t, x, ξ), escreve-se:

u(t, x) =

∞∑
j=0

vj(x)ηj(t), (20)

onde ηj(t) são coeficientes temporais a serem determinados e vj(x) = [vj1(x), vj2(x)]
T são os j-

ésimos modos de vibração do sistema. A resposta forçada será determinada para o sistema não
amortecido. Como M é uma matriz simétrica e definida positiva e K é uma matriz simétrica, as
condições de ortogonalidade entre os modos de vibração são dadas por [1]:

〈
Kvj(x),vi(x)

〉
=

∫ L

0

(vj)T (x)Kvi(x)dx =

{
0 , i ̸= j,

ω2
i , i = j,

, (21)

〈
Mvj(x),vi(x)

〉
=

∫ L

0

(vj)T (x)Mvi(x)dx =

{
0 , i ̸= j,
1 , i = j,

, (22)
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onde ωi, i = 1, 2, ..., n são as frequências naturais do sistema.
Substituindo (20) em (1), com C = 0, multiplicando à esquerda a equação resultante por

(vj)T (x), integrando de 0 a L e usando as equações (21) e (22), segue o sistema desacoplado,

η̈i(t) + ω2
i ηi(t) = Gi(t), onde Gi(t) =

∫ L

0

(vi)T (x)F (t, x)dx, i = 1, 2, ... (23)

A solução da equação (23), considerando condições iniciais nulas, ηi(0) = 0 e η̇i(0) = 0, é

ηi(t) =

∫ t

0

hi(t− τ)Gi(τ)dτ, (24)

onde hi(t) é a resposta fundamental temporal, solução do problema de valor inicial

ḧi(t) + ω2
i hi(t) = 0, hi(0) = 0, ḣi(0) = 1, dada por hi(t) =

sin(ωit)

ωi
, i = 1, 2, 3, .... (25)

Substituindo (25) e (23) em (24) e depois (24) em (20), obtém-se

u(t, x) =

∫ t

0

∫ L

0

h(t− τ, x, ξ)F (τ, ξ)dξdτ, (26)

com a matriz h(t, x, ξ), 2× 2, dada por

h(t, x, ξ) =

∞∑
i=1

hi(t)v
i(x)(vi)T (ξ). (27)

A partir da equação(26), a resposta forçada da primeira e da segunda viga pode ser expressa pelas
seguintes integrais:

u1(t, x) =

∫ t

0

∫ L

0

(h11(t− τ, x, ξ)f1(τ, ξ) + h12(t− τ, x, ξ)f2(τ, ξ))dξdτ, (28)

u2(t, x) =

∫ t

0

∫ L

0

(h21(t− τ, x, ξ)f1(τ, ξ) + h22(t− τ, x, ξ)f2(τ, ξ))dξdτ. (29)

6 Simulações
A seguir, são realizadas algumas simulações, com os seguintes parâmetros ρ1 = ρ2 = ρ = 2×103

kg m−3, A1 = A2 = A = 5 × 10−2 m2, m = ρA, E1 = E2 = E = 1 × 1010N m−2, I1 = I2 = I =
4× 10−4m4, k = 1× 105Nm−2, c = 8× 103Nm/s, kf = 2, 5× 106Nm−2 e L = 10m [4].

Com o objetivo de observar os efeitos dos parâmetros de massa e rigidez no comportamento das
frequências e nos modos de vibração foram considerados três casos distintos. Em todos os casos
as duas vigas são fixas em x = 0 e livres em x = L, de modo que a equação característica é dada
pela equação (18).

Na Tabela 1 são apresentados as seis primeiras frequências naturais ωi para os três casos
considerados. Na Figura 6, são mostrados os quatro primeiros modos de vibração, e na Figura 3,
a resposta forçada correspondente às excitações f1 = 4 e f2 = 200 sen(2t).

CASO 1: E1I1 = E2I2, ρ1A1 = ρ2A2,

CASO 2: E1I1 = 2E2I2, ρ1A1 = 2ρ2A2,

CASO 3: 2E1I1 = E2I2, 2ρ1A1 = ρ2A2.
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Tabela 1: Frequências naturais.
Caso 1 Caso 2 Caso 3

ω1 31,7728 31,7846 31,7479
ω2 53,8715 53,8784 53,8568
ω3 127,2249 127,2283 114,4188
ω4 161,5888 226,9420 122,3881
ω5 167,3508 261,6454 127,2384
ω6 204,8892 326,2969 168,1821

(a) Primeiro modo ω1 (b) Segundo modo ω2

(c) Terceiro modo ω3 (d) Quarto modo ω4

Figura 2: Quatro primeiros modos de vibração para ωi, i = 1..4. CASO 3. Fonte: autora.

Figura 3: Resposta forçada para a Viga dupla Euler-Bernoulli. Fonte: autora.
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7 Considerações Finais
Obter a resposta forçada de vigas desempenha um papel essencial no projeto e na avaliação

de estruturas sujeitas a forças externas. Por meio da análise modal, foram obtidas a equação
característica, as frequências naturais e os modos de vibração do sistema considerado. A solução
fundamental foi empregada para simplificar a forma dos modos, determinar as frequências naturais
e expressar a resposta forçada, ampliando assim a classe de problemas que podem ser resolvidos
por meio dessa abordagem. Destaca-se a importância da condição de ortogonalidade entre os mo-
dos de vibração no desacoplamento das equações utilizadas para determinar a resposta forçada.
Para sistemas amortecidos, torna-se necessário estabelecer uma condição de ortogonalidade entre
os modos do problema direto e os modos do problema adjunto associado. As simulações reali-
zadas mostraram-se satisfatórias, indicando que o método adotado representa adequadamente o
comportamento estrutural da viga.
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