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Abstract— We study the limiting regime of nonlinear parabolic equations posed in a time dependent family
of domains {Ωεt}t∈R ⊂ Rn+1 which collapses to a lower dimensional set as the parameter ε goes to 0.
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1 Introduction

In this work, based on paper [5], we are concerned
with the effective behavior of a nonlinear reaction-
diffusion equation posed in a time dependent fami-
ly of domains which collapses to a lower dimen-
sional set. Inspired by the recent works [3,4],
both of them related with asymptotic behavior
of reaction-diffusion equations on time-dependent
domains, we are interested with reaction-diffusion
equations in a time dependent thin domain. For
the best of our knowledge this is an untouched
topic in the literature.

In order to set up the problem, let ω be a
smooth bounded domain in Rn, n ≥ 1, and g ∈
C2(ω × R;R) satisfying

(G1) There exist positive constants α1 and α2 such
that

α1 ≤ g, |∇x g|, gt, gtt ≤ α2,

for all (x, t) ∈ ω × R;

(G2) There exists a constant k such that

|gxi(x, t)− gxi(x, s)| ≤ k|t− s|,

for all (x, t) ∈ ω × R, i = 1, 2, · · · , n.

In the following, ε will denote a positive pa-
rameter which will converge to zero. Fixed t ∈ R
we define the time-dependent thin domain

Ωεt := {(x, y) ∈ Rn+1 : x ∈ ω, 0 < y < εg(x, t)}.

For each τ ∈ R and ε ≥ 0 we set the domain

Qετ :=
⋃

t∈(τ,∞)

Ωεt × {t},

as well the lateral boundary

Σετ :=
⋃

t∈(τ,∞)

∂Ωεt × {t},

where Ω0
t := ω for all t ∈ (τ,∞).

For positive values of the parameter ε, we con-
sider the semilinear reaction-diffusion equation

uεt −∆uε + uε = f(uε), in Qετ ,
∂uε

∂ηετ
= 0, on Σετ ,

uε(·, τ) = uετ , in Ωετ ,

(1)

where ηετ denotes the unit outward normal vec-
tor field to Σετ , ∂

∂ηετ
denotes the outwards normal

derivative and f : R → R is a C2-function with
bounded derivatives up second order.

Besides, since our interest resides in the
asymptotic behavior of the solutions and its de-
pendence with respect to ε, we will require that so-
lutions of (1) are bounded for large values of time.
A natural assumption to obtain this boundedness
is expressed in the following dissipative condition

lim sup
|s|→∞

f(s)

s
< 0. (2)

This implies for any η > 0, the existence of a
positive constant cη such that,

f(s)s ≤ ηs2 + cη, ∀ s ∈ R.

In the analysis of the limiting behavior of the
problem (1), it will be useful to introduce the do-
main Ω := ω×(0, 1), independent of ε and t, which
is obtained from Ωεt by the change of coordinates

T εt : Ω→ Ωεt

(x, y) 7→ (x, ε g(x, t)y)

Such change of coordinates induces an isomor-
phism from Wm,p(Ωεt) onto Wm,p(Ω) by

u
Φεt7−→ v := u ◦ T εt (3)
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with partial derivatives related by

ut = vt −
ygt
g
vy

uxi = vxi −
ygxi
g
vy, i = 1, . . . , n

uy =
1

ε g
vy.

(4)

In this new coordinates we rewrite equation
(1) as the following (nonautonomous) equation
posed in the fixed domain Ω,

vεt −
1

g
divBε(t)v

ε − y gt
g
vεy + vε = f(vε), in Ω,

Bε(t)v
ε · η = 0, on ∂Ω,

vε(·, τ) = uετ ◦ T ετ , in Ω,
(5)

where η denotes the unit outward normal vector
field to ∂Ω, and

Bε(t)v =


gvx1

− ygx1
vy

...
gvxn − ygxnvy

−
n∑
i=1

ygxivxi +
1

ε2g

(
1 +

n∑
i=1

(εygxi)
2
)
vy


After a careful study of the solutions of (5),

one starts to suspect that vε tends not to depend
on the variable y as ε→ 0. Therefore, if a limiting
regime for the problem (1) exists, then it should
be given by the (non-autonomous) problem

vt −
1

g

n∑
i=1

(gvxi)xi + v = f(v), in ω,

∂v

∂ν
= 0, on ∂ω,

v(·, τ) = vτ , in ω,

(6)

where ν denotes the unit outward normal vector
field to ∂ω.

The comparison between solution of the prob-
lems (5) and (6) is the aim of this paper.

2 Abstract Formulation

We start stressing the fact that Ωεt varies in ac-
cordance with a positive parameter ε, collapsing
themselves to the lower dimensional domain ω as
ε goes to 0. Therefore, in order to preserve the
“relative capacity”of a mensurable subset E ⊂ Ωεt,
we rescale the Lebesgue measure by a factor 1/ε
dealing with the singular measure ρε(E) = ε−1|E|.

As we will see, it will be convenient to con-
sider the space Hε := H1(Ω) endowed with the
equivalent norm

‖v‖Hε :=

[∫
Ω

(
|∇xv|2 +

1

ε2
|vy|2 + |v|2

)
dxdy

] 1
2

.

It is immediate consequence of (G1) that the fam-
ily of isomorphism {Φεt} satisfies

‖Φεt‖L(H1(Ωεt ;ρ
ε),Hε) ≤ c,

for some positive constant c independent on ε and
t.

For each pair of parameters (ε, t) ∈ (0, 1]×R,
we consider the sesquilinear form

aεt : Hε ×Hε → R

aεt(u, v) =

∫
Ω

(Bε(t)u · ∇v − ygt(x, t)uyv

+ g(x, t)uv) dxdy.

(7)

As a first remark, we notice that under as-
sumptions (G1), aεt is a continuous form and there
exist positive constants c1, c2, independents on ε
and t, such that

c1‖v‖2Hε ≤ a
ε
t(v, v) ≤ c2‖v‖2Hε , (8)

for all v ∈ Hε and (ε, t) ∈ (0, ε̄]× R.
Since Hε is densely and compactly embedding

in L2(Ω), the sesquilinear form aεt yields a densely
defined positive linear operator with compact re-
solvent, Aε(t) : D(Aε(t)) ⊂ L2(Ω) → L2(Ω),
which is defined by the relation

aεt(u, v) = (Aε(t)u, v)t, u ∈ Hε, v ∈ D(Aε(t)),

where (u, v)t :=

∫
Ω

g(x, t)uv dxdy.

By regularity of ∂ω we notice that

D(Aε(t)) = {v ∈ H2(Ω) : Bε(t)v · η = 0},

is independent on ε. Moreover

Aε(t)v = − 1

g(·, t)
divBε(t)v − y

gt(·, t)
g(·, t)

vy + v,

for all v ∈ D(Aε(t)).
Multiplying equation (5) by ϕ ∈ H1(Ω) and

integrating by parts we get

(vεt , ϕ)t + aεt(v
ε, ϕ) = (f(vε), ϕ)t.

Hence we can write equation (5) as an ab-
stract equation

dvε

dt
(t) +Aε(t)v

ε(t) = fe(vε(t)), (9)

where fe is the Nemitskii operator (composition
operator) associated to f .

Combining assumptions (G1)-(G2), we also
have that

|aεt(u, v)− aεs(u, v)| ≤ k1|t− s|‖u‖Hε‖v‖Hε , (10)

for some constant k1 independent on ε, t, s ∈ R,
and u, v ∈ Hε. Therefore, thanks to Theorem
5.4.2 in [6] there exists an unique solution of the
linear homogeneous problem{

dvε

dt
(t) +Aε(t)v

ε(t) = 0, t ≥ τ ∈ R
vε(τ) = vετ ∈ Hε.

(11)
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This allow us to consider for each value of the
parameter ε, each initial time τ ∈ R and each
initial data vετ ∈ Hε, the solution vε(·, τ, vετ ) ∈
C1([τ,∞);Hε) of (11). This give raise a linear
process {Lε(t, τ), t ≥ τ} ⊂ L(Hε) defined by
Lε(t, τ)vετ := vε(t, τ, vετ ). We notice that (11) is
the abstract Cauchy problem associated to the
equation (5) in the case f ≡ 0.

Since we are assuming the nonlinearity f ∈
C2(R;R) bounded as well as its derivatives up sec-
ond order, local existence of the nonlinear coun-
terpart is guaranteed by Theorem 6.6.1 in [6], i.e,
writing the problem (5) as{

dvε

dt
(t) +Aε(t)v

ε(t) = fe(vε(t)),

vε(τ) = vετ ∈ Hε,
(12)

there exist a time Tτ > 0 and an unique solu-
tion vε(·, τ, vετ ) ∈ C1([τ, τ + Tτ ];Hε) of (12). Un-
der dissipative assumption (2) on the nonlinear-
ity f , one can show that actually vε(·, τ, vετ ) ∈
C1([τ,∞);Hε). Further details can be found in
[1] and [2].

Similarly to the linear case, this allow us to
consider for each value of the parameter ε, each
initial time τ ∈ R, and each initial data vε ∈ Hε

, the (nonlinear) evolution process {Sε(t, τ) : t ≥
τ} in the state space Hε defined by Sε(t, τ)vε :=
vε(t, τ, vε).

By reader’s convenience we recall the defini-
tion of an evolution process in a Banach space

Definition 1 We say that a family of maps
{S(t, τ) : t > τ ∈ R} from a Banach space X
into itself is an evolution process if

(i) S(τ, τ) = I (identity operator in X ), for any
τ ∈ R,

(ii) S(t, σ)S(σ, τ) = S(t, τ), for any t > σ > τ ,

(iii) (t, τ) 7→ S(t, τ)v is continuous for all t > τ
and v ∈ X .

3 Limiting consideration

For each t ∈ R we consider the sesquilinear form

a0
t : H1(ω)×H1(ω)→ R

defined by

a0
t (u, v) =

∫
ω

g(x, t)
(
∇u · ∇v + uv

)
dx.

With this definition we immediate have that

α1‖v‖2H1(ω) ≤ a
0
t (v, v) ≤ α2‖v‖2H1(ω), (13)

for all v ∈ H1(ω).
Similarly, a0

t gives rise a densely defined
positive linear operator with compact resolvent,

A0(t) : D(A0(t)) ⊂ L2(ω) → L2(ω), defined by
relation

a0
t (u, v) = ((A0(t)u, v))t, u ∈ H1(ω), v ∈ D(A0(t))

where ((u, v))t :=

∫
ω

g(x, t)uv dxdy, u, v ∈ L2(ω).

By regularity of ∂ω,

D(A0(t)) = {v ∈ H2(ω) : ∇v · η = 0},

and is independent on t. Moreover

A0(t)v = − 1

g(·, t)

n∑
i=1

(g(·, t)vxi)xi+v, v ∈ D(A0(t)).

By (G1)-(G2) there exists a constant k2 (in-
dependent on t) such that

|a0
t (u, v)− a0

t (u, v)| ≤ k2|t− s|‖u‖H1(ω)‖v‖H1(ω),

for all t, s ∈ R and u, v ∈ H1(ω).
Therefore, writing equation (6) as an abstract

evolution equation dv0

dt
(t) +A0(t)v0(t) = fe(v0(t))

v0(τ) = v0
τ ∈ H1(ω),

(14)

we can define a (nonlinear) evolution process
{S0(t, τ) : t ≥ τ} in the state space H1(ω) by
S0(t, τ)v0 := v0(t, τ, v0)

Now we have now the elements to state our
results

Lemma 2 If {f ε} is a bounded family in L2(Ω)
then {Aε(t)−1f ε} is a bounded family in Hε.

Lemma 3 Let {f ε} be a bounded family in

L2(Ω). If Mf ε⇀f̂ w-L2(ω), then

‖Aε(t)−1f ε − EA0(t)−1f̂‖Hε
ε→0−→ 0, (15)

uniformly in t in bounded subsets of R, where the
extension operator E is defined as

E : H1(ω)→ H1(Ω)
(Eu)(x, y) = u(x)

(16)

Theorem 4 Under the assumptions (G1), (G2)
on the profile g ∈ C2(ω × R;R), and assuming
that the nonlinearity f ∈ C2(R;R) is bounded with
bounded derivatives up second order, then equa-
tions (12) and (14) generate evolution processes
{Sε(t, τ) : t ≥ τ} and {S0(t, τ) : t ≥ τ} in Hε and
H1(ω) respectively. Moreover, given vε ∈ Hε and

v0 ∈ H1(ω) such that vε
ε→0−→ Ev0 in L2(Ω), then

‖Sε(t, τ)vε − ES0(t, τ)v0‖Hε
ε→0−→ 0,

uniformly for (t, τ), t ≥ τ , in bounded subsets of
R2.

Proof: See [5]. 2
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