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Abstract— We study the limiting regime of nonlinear parabolic equations posed in a time dependent family
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1 Introduction

In this work, based on paper [5], we are concerned
with the effective behavior of a nonlinear reaction-
diffusion equation posed in a time dependent fami-
ly of domains which collapses to a lower dimen-
sional set. Inspired by the recent works [3,4],
both of them related with asymptotic behavior
of reaction-diffusion equations on time-dependent
domains, we are interested with reaction-diffusion
equations in a time dependent thin domain. For
the best of our knowledge this is an untouched
topic in the literature.

In order to set up the problem, let w be a
smooth bounded domain in R™, n > 1, and g €
C?(w x R;R) satisfying

(G1) There exist positive constants a; and as such
that

a1 <9, [Vagl, g, g < o,
for all (z,t) € w x R;
(G2) There exists a constant k such that
|92, (€, 1) = ga, (2, 5)| < K[t — 5],
for all (z,t) ew xR, i=1,2,--- ,n.

In the following, ¢ will denote a positive pa-
rameter which will converge to zero. Fixed t € R
we define the time-dependent thin domain

Q= {(z,y) eR"M iz €w, 0 <y <eg(x,t)}.
For each 7 € R and € > 0 we set the domain

Q= U oxin

te(1,00)

as well the lateral boundary

o= |J 095 x {t},

te(r,00)
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where QY := w for all t € (1, 00).

For positive values of the parameter €, we con-
sider the semilinear reaction-diffusion equation

wf — Au +ut = fu), i QL
8 €
3Z§ =0, onXf, (1)

€ — € 3 €
u(,7) =us, in QF,
where 1¢ denotes the unit outward normal vec-

tor field to X<, 325 denotes the outwards normal

derivative and f : R — R is a C?-function with
bounded derivatives up second order.

Besides, since our interest resides in the
asymptotic behavior of the solutions and its de-
pendence with respect to €, we will require that so-
lutions of (1) are bounded for large values of time.
A natural assumption to obtain this boundedness
is expressed in the following dissipative condition

lim sup fs) < 0. (2)

|s]—o0 S

This implies for any n > 0, the existence of a
positive constant ¢, such that,

f(s)s<ns®*+ec,, VseR

In the analysis of the limiting behavior of the
problem (1), it will be useful to introduce the do-
main € := wx (0, 1), independent of € and ¢, which
is obtained from €2 by the change of coordinates

T Q- O
(z,y) = (z,eg(x,t)y)

Such change of coordinates induces an isomor-
phism from WP (%) onto W™P?(Q) by

u&v::uoﬁe (3)
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with partial derivatives related by

_ Ygi
Ut =V — — Uy
Up, = Vg, — Y9z: vy, i=1,...,n (4)
g
1
Uy = —
VT gty

In this new coordinates we rewrite equation
(1) as the following (nonautonomous) equation
posed in the fixed domain €2,

€ 1 d' € gt € € __ € 3

v§ 3 ivBe(t)v fygvy + ¢ = f(v%), inQ,

B.(t)v°-n =0, ondQ,

ve(,T) =uSoTE inQ,

()

where 7 denotes the unit outward normal vector
field to 092, and

9gUzy — ygIlvy

Be(t)v = 9Vz,, — Y9Gz, Uy

n n
1
- Z YGz; Vz; + ET (1 + Z(Eygxi)2>vy
i=1 9 i=1

After a careful study of the solutions of (5),
one starts to suspect that v¢ tends not to depend
on the variable y as ¢ — 0. Therefore, if a limiting
regime for the problem (1) exists, then it should
be given by the (non-autonomous) problem

Vg — — Z(gvxi)wl +v=[f(v), nw,
@ - 01:1 (6)

where v denotes the unit outward normal vector
field to dw.

The comparison between solution of the prob-
lems (5) and (6) is the aim of this paper.

2 Abstract Formulation

We start stressing the fact that f varies in ac-
cordance with a positive parameter €, collapsing
themselves to the lower dimensional domain w as
€ goes to 0. Therefore, in order to preserve the
“relative capacity” of a mensurable subset £ C 2,
we rescale the Lebesgue measure by a factor 1/e
dealing with the singular measure p¢(E) = ¢ | E|.

As we will see, it will be convenient to con-
sider the space H. := H'(Q) endowed with the
equivalent norm

1 2
lvl|a, = {/ <V¢U|2 + :2\111,|2 + |v|2) dxdy} .
Q

It is immediate consequence of (G1) that the fam-
ily of isomorphism {®$} satisfies

H‘I)ZHL(Hl(QS;p"),HE) <¢
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for some positive constant ¢ independent on € and
t.
For each pair of parameters (¢, t) € (0,1] x R,

we consider the sesquilinear form
a; : Hex Ho = R

(Be(t)u - Vo — yge(z, t)uyv - (7)
Q
+ g(z, t)uv) dzdy.

ag(u,v) =

As a first remark, we notice that under as-
sumptions (G1), af is a continuous form and there
exist positive constants ¢y, co, independents on €
and t, such that

allollf, < af(v,v) < eallvll, (8)

for all v € H, and (¢,t) € (0,¢ x R.

Since H. is densely and compactly embedding
in L2(€2), the sesquilinear form af yields a densely
defined positive linear operator with compact re-
solvent, A.(t) : D(A(t)) C L*(Q) — L*(Q),
which is defined by the relation

aj(u,v) = (Ac(t)u,v)y, u € He, v € D(A()),

where (u,v); := | g(z,t)uvdxdy.

Q
By regularity of 0w we notice that
D(Ac(t)) = {v e H*(Q) : Be(t)v-n =0},
is independent on €. Moreover

gt("t)
g("t)

1
A(t)v = ———divB(t)v — y
for all v € D(A(t)).
Multiplying equation (5) by ¢ € H'(Q) and
integrating by parts we get

Vy + v,

(’U;v QO)t + a:(vev 90) = (f(vi)a ‘P)t-

Hence we can write equation (5) as an ab-
stract equation

dv®

dt

(1) + Ac(t)v(t) = F(v°(2)), (9)

where f€ is the Nemitskii operator (composition
operator) associated to f.

Combining assumptions (G;)-(G2), we also
have that

|ai(u,v) — al(u, v)| < k|t = slJullm o]z, (10)

for some constant k; independent on €, t,s € R,
and u,v € H.. Therefore, thanks to Theorem
5.4.2 in [6] there exists an unique solution of the
linear homogeneous problem

dt

{ @(t) + Ac(t)v(t) =0, t>T€R (1)
vé(T) =v¢ € He.
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This allow us to consider for each value of the
parameter €, each initial time 7 € R and each
initial data v¢ € H,, the solution v¢(-,7,v¢) €

Cl([r,00); H.) of (11). This give raise a linear
process {L¢(t,7),t > 7} C L(H.) defined by
L (t, T)vs = ve(t,7,v5). We notice that (11) is

the abstract Cauchy problem associated to the
equation (5) in the case f = 0.

Since we are assuming the nonlinearity f €
C?(R;R) bounded as well as its derivatives up sec-
ond order, local existence of the nonlinear coun-
terpart is guaranteed by Theorem 6.6.1 in [6], i.e,
writing the problem (5) as

dUE € e €
{ SO AW = O, (g
veé(T) = vt € He,

there exist a time 7, > 0 and an unique solu-
tion v¢(-, 7,v¢) € C (|1, 7+ Ty]; He) of (12). Un-
der dissipative assumption (2) on the nonlinear-
ity f, one can show that actually v¢(-,7,vE) €
CY([r,00); H.). Further details can be found in
[1] and [2].

Similarly to the linear case, this allow us to
consider for each value of the parameter €, each
initial time 7 € R, and each initial data v¢ € H,
, the (nonlinear) evolution process {Sc(t,7) : ¢
7} in the state space H, defined by S.(t,7)v°
ve(t, T, v°).

By reader’s convenience we recall the defini-
tion of an evolution process in a Banach space

v

Definition 1 We say that a family of maps
{S(t,7) : t > 7 € R} from a Banach space X
into itself is an evolution process if

(i) S(t,7) =1 (identity operator in X), for any
T ER,

(i) S(t,0)S(o,7) =S(t, 1), for anyt >0 >,

(iwi) (t,7) — S(t,T)v is continuous for all t = T
andv € X.

3 Limiting consideration
For each ¢t € R we consider the sesquilinear form
a?: HY(w) x H'(w) = R

defined by

a9 (u, v) = / 9(a,

With this definition we immediate have that

t)(Vu- Vo + uv)dz.

a1l < i (v,v) < a2llvllfng),  (13)

for all v € H'(w).
Similarly, a gives rise a densely defined
positive linear operator with compact resolvent,
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Ao(t) : D(Ao(t)) C L*(w) — L?(w), defined by
relation
al(u,v) = ((Ap(t)u,v))s, u € H(w), v € D(Ap(t))

where ((u,v)); := [ g(z,t)uv dzdy, u,v € L*(w).
By regularity of Ow,
D(Ao(t)) = {v € H*(w) : Vv -n =0},

and is independent on t. Moreover

Z e, v € D(Ap(t)).

=1

Ao(t)v

By (G1)-(G2) there exists a constant ko (in-
dependent on t) such that

jag (u,v) = ag (u,v)| < Folt = slllull ) 0] ),
for all t,s € R and u,v € H'(w).

Therefore, writing equation (6) as an abstract
evolution equation

d%”t D+ A0 = W0 1y
) =% € H'(w),

we can define a (nonlinear) evolution process
{So(t,7) : t > 7} in the state space H'(w) by
So(t, 7)v0 :=00(t, 7,0°)

Now we have now the elements to state our
results

Lemma 2 If {f¢} is a bounded family in L?(Q)
then {A(t)~1f<} is a bounded family in H..

Lemma 3 Let {f°} be a bounded family in
L2(Q). If Mfe—f w-L*(w), then

|A() 7 f = BA()  fllw. Z20,  (15)

uniformly in t in bounded subsets of R, where the
extension operator E is defined as

E:HY(w) — HY Q)
(Bu)(z,y) = u(z)

Theorem 4 Under the assumptions (G1), (G2)
on the profile g € C?*(@ x R;R), and assuming
that the nonlinearity f € C*(R;R) is bounded with
bounded derivatives up second order, then equa-
tions (12) and (14) generate evolution processes
{Se(t,7):t > 7} and {So(t,7) : t > 7} in He and
HY(w) respectively. Moreover, given v¢ € H. and
00 € HY(w) such that v¢ =3 Ev° in L2(Q), then

(16)

1S (t, T)v¢ — ESo(t, 7)0° || . =30,

uniformly for (t,7), t > 7, in bounded subsets of
R2.

Proof: See [5]. a
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