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Abstract. This study improves the traditional Perfectly Stirred Reactor (PSR) model by incor-
porating an additional energy source to more accurately represent the spark ignition process in a
laminar premixed flame within a counterflow configuration. A non-dimensional system of govern-
ing ordinary differential equations (ODEs) is formulated to describe the behavior of temperature
and fuel concentration under these conditions. A mathematical analysis is conducted to assess
the stability of steady-state solutions in the dynamic system, utilizing the large activation energy
asymptotic limit as a primary analytical tool. Analytical solutions for stable regimes, characterized
by negative eigenvalues, are derived and it is found that the equilibrium steady states exhibit two
stable regimes: one corresponding to failed ignition and the other to successful ignition.
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1 Introduction

Combustion efficiency can be optimized through a better understanding of the spark ignition
process of premixed combustible gas mixtures. In [4], numerical investigation has been performed
to understand the effect of the initial pressure wave generated by the spark on the minimum igni-
tion energy (MIE), which is a fundamental parameter to determine the success or failure of ignition
process in different operational conditions. The study highlights the importance of accounting for
pressure wave dynamics in accurately predicting MIE in practical combustion systems. Further in-
vestigations such as [8, 9] calculate MIE for a range of parameters, including mixture compositions,
pressures, radii of external energy sources, and ignition times. These studies offer valuable insights
into how these factors affect the energy threshold needed to ignite premixed gases, providing crucial
information for both cylindrical and spherical geometries.

Recently, the relatively new configuration of spark ignition of laminar premixed flame in coun-
terflow [11, 12] has been proposed and numerically investigated. This configuration enables the
examination of the spark ignition process under a constant flame strain rate, a parameter that
characterizes both the flow velocity and the velocity gradient along the flame surface. This ap-
proach significantly simplifies the complexities encountered in spherical flames, where the flame
strain rate undergoes instantaneous changes during flame propagation [3, 5].

In [11, 12], it was reported that the MIE increases with larger flow velocity, as more gas mixture
passes through the energy source region. Additionally, at short spark duration times, the MIE
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shows only minor changes. Thus, one might ask if these conclusions can be extended to another gas
mixture since, although this configuration has been investigated for both methane/hydrogen/air
and ammonia/hydrogen/air mixtures, there is no simple theoretical formulation discussing the
effect of flow conditions on the spark ignition process for this configuration.

In order to answer this question, the spark ignition process in a laminar strained premixed flame
is modeled by means of the classic Perfectly Stirred Reactor (PSR) by introducing an additional
energy source. The corresponding residence time describes the rate of mass transport, which can
be used to directly compare with the chemical reaction rate.

2 Mathematical Modeling

In the present work, the classic Perfectly Stirred Reactor (PSR) model [10] is selected, and an
external spark energy source is considered, which provides energy to the gas mixture inside the PSR.
In this PSR model, temperature and species concentrations are spatially homogeneously distributed
within the system. Initially, the reactor is filled with an unburnt premixed gas mixture, which is
heated by the spark ignition energy. Throughout the process, fresh unburnt gas, corresponding to
the initial state of the gas inside the PSR, enters the reactor, mixes with the heated gas mixture,
cools it down, and subsequently exits the reactor. To determine whether the spark ignition process
is successful, we can simply examine the steady state of the PSR model. If the gas mixture
leaves the reactor with the same thermo-kinetic properties as the fresh unburnt gas mixture, then
ignition has not been successful. However, if the exiting gas mixture exhibits a high temperature
and consists of combustion products, ignition can be considered successful. Unlike the conventional
PSR model, when additional ignition energy is introduced, we are not limited to analyzing only
the steady-state behavior. Instead, we can also investigate the entire ignition process, including
the transient evolution leading up to the steady state.

When considering the PSR model, we take into account not only the chemical reaction rate
but also the residence time, a physical timescale that describes the mixing process. Therefore, this
model can be used to further investigate the impact of different physical timescales on the chemical
reaction process.

To simplify the analysis, we consider an adiabatic condition, in which no heat loss from the
reactor to the surroundings occurs. This is a reasonable simplification since the entire chemical
process takes place rapidly. Furthermore, all physical properties such as p and isobaric heat capacity
¢, are regarded as constant values. For the chemistry, a one-step global reaction F(uel)—P(roduct)
is applied and the reaction rate is governed by the Arrhenius law with first reaction order.

Based on these assumptions, the following conservation equations for energy in terms of tem-
perature T inside the reactor and volumetric fuel concentration ¢g can be written as:

dT T—Tw ~- <

det PCp = QwF (1)
decr CF — CFjin <~
dt TR F @)

In both equations, Tg is the residence time, a physical timescale describing the mixing process
between mixture inside the reactor and fresh unburnt gas entering the reactor. The thermo-kinetic
states of the incoming fresh gas mixture entering the reactor are described by the temperature Ti,
and volumetric fuel concentration cpj,. () denotes the heat release of the chemical reaction, and
Wp the consumption rate of fuel due to chemical reaction, which is expressed as:

: ~ E,
wp = Aépexp | ——= , 3
F F p( RT) ( )
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where A is the pre-exponential factor, Eg the activation energy and R the universal gas constant.
For power of spark ignition energy ES, it follows the case conditions that i) Es = ES /75 for

t < 7,; and ii) E, =0 for { > 7,, in which 7, is the spark deposited time, and E, the volumetric
total spark ignition energy.

In order to simplify the analysis, we introduce several dimensionless variables: dimensionless
activation energy (3, dimensionless heat release B, dimensionless time ¢, dimensionless fuel concen-
tration cg, dimensionless temperature § and Damkohler number Da, which are defined as

Ea Q ~ ? c in — c
6 = == B = ,\,\C,QiécF,in7 t= = Cp = u7
Rﬂn PCpTin TR CF,in
T - T‘in T,
0= M, Da = " = —= Th —1- (4)
Tin Tchem [A exp (— ﬂ)]

For cp = 0, the gas mixture consists only of fuel, while for cp = 1, the fuel is fully converted into
product. For 0 < cp < 1, the gas mixture consists of both fuel and product.

Among these dimensionless variables, the dimensionless activation energy 3, the dimensionless
heat release B, and the Damkohler number Da are three most important quantities which are
used to describe the chemical reaction (8 and B) and the coupling between chemistry and physical
process (Da). The dimensionless activation energy f is typically considered to be in the range of
30 < B < 50 for a combustion system [2, 13]. The dimensionless heat release B can have a wide
value range: B with small value indicates a weak exothermic chemical reaction; while B with a
large value represents a strong exothermic chemical reaction. The third dimensionless parameter,
the Damkohler number (Da), plays a key role in characterizing the ratio between the flow timescale
(specifically, the residence time) and the chemical reaction time scale. When Da — oo, it indicates
that the chemical reaction proceeds infinitely fast.

By applying these dimensionless variables, the above-mentioned governing equation can be
rewritten in dimensionless form as

o 0 . L = (<)

& — 9+ BDa(1- — 7 ) 4é,, with eg={ T

q + BDa( cF)exp(l+6/5>+e with é { 0 (> (5)
dCF 0
W = —cr+ Da(l — CF) exp <]_<|»0/ﬂ)7 (6)

with the initial condition
0t=0)=0, and cp(t=0)=0. (7)

At steady state, if the mixture leaves the reactor with ¢y ~ 0, the system has not been successfully
ignited. If the mixture leaves the reactor with ¢p & 1, then most of the fuel has been converted
into product, indicating successful ignition.

Figure 1 shows the typical time evolution of dimensionless temperature and fuel concentration
for both failed ignition (left) and successful ignition (right). In both cases, the spark duration time
is set to 0.1, as indicated by the vertical dashed lines. The key difference between the two scenarios
is the amount of spark ignition energy supplied (different values of e;).

e For a failed ignition, where the spark ignition energy is relatively low (here, e, = 0.5), the
dimensionless fuel concentration at steady state drops to approximately 0.01. This indicates
that almost no fuel is converted into combustion products, suggesting that the spark en-
ergy was insufficient to support the reaction. Consequently, the dimensionless temperature
remains well below 1.
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e for a successful ignition with sufficiently high spark ignition energy (here, es = 3), the
system behaves very differently. A sharp rise in both temperature and fuel concentration
can be observed during ignition. The fuel concentration reaches a steady-state value close
to 1.0, suggesting that a significant portion of the fuel undergoes combustion, leading to
a substantial temperature increase. The corresponding dimensionless temperature rises to
approximately 8.
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Figure 1: Time-development of dimensionless temperature and fuel concentration for a failed
ignition (left, e; = 0.5) and a successful ignition (right, e; = 3). Model parameter: B = 8,
7, = 0.1, B =40, Da—! = 25. Source: from the authors.

From this example, we observe that, for the same values of dimensionless variables, the dynamic
system can evolve toward different steady states depending on the supplied spark ignition energy.
This shows that the system is very sensitive to input spark ignition energy. Even a small variation
in the spark ignition energy can result in completely different ignition scenarios — either a failed
ignition or a successful combustion process.

To get deeper understanding on the mechanisms driving these two totally different scenarios,
the following sections will present a mathematical analysis of the dynamic system. This analysis
will help evaluate the key factors influencing ignition success and provide a clear understanding of
the system’s response to varying spark ignition energy.

3 Mathematical Analysis

Now, we investigate some fundamental aspects of the dynamic system, including the stability
of the steady-state solutions and how these steady states change with respect to the dimensionless
variables. For the steady-state (SS) condition (d¢/dt = 0, dcp/d¢t = 0), the manifold for the
steady-state solution is obtained as:

0 = B - 5. 8)

It can be observed that the steady-state solution is a linear function with a constant slope, where
the slope is determined by the dimensionless heat release variable B. This indicates that the
steady-state solution depends solely on the value of B.

Based on the assumption that 8 > 1 [2, 13], the exponential term can be approximated as

exp (ﬁ) ~ exp (0). Consequently, the Jacobian matrix of the approximated source term from
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5
Eq.(6), together with the steady state solution Eq.(8), can be written as:
—1+B Da (1 - 0;)6955 —B Da e
J(0SS) - EE ss ss ’ (9)
Da (1 - GB )e? —1— Da €’
and the corresponding two eigenvalues of the considered dynamical systems are:
A 0)  [/-1.0 0
( 0 A2> B ( 0 -14+(B-1-6%)Da 60“) (10)
Both eigenvalues are real, and at least one eigenvalue is a negative constant (A\; = —1.0). The

second eigenvalue (\2) determines the stability of the whole system:

e )\ < 0: the steady-state along the manifold is asymptotically stable, meaning perturbations
will decay over time [1, 7]. The range to ensure Ay < 0 can be analytically determined as:

L ={6%:0<6%<65,} or I,={0%:6">065, (11)

with

a

o el_B . el—B
lb*}bxt:B_l'i_Wl(_D >7 and 6§§n:B_1+WO(_Da>

Here Wy and W_; are two branches of Lambert W function [6]. We notice that to get a
negative eigenvalue, there are two regimes, where stable steady-state solutions are obtained:
If 6% falls within I, the system reaches one stable regime describing a failed spark ignition
solution; If 6% falls within I, the system reaches the other stable regime where successful
spark ignition is achieved.

e X2 > 0: the steady-state becomes unstable and behaves like a saddle point [1, 7]. The
corresponding range for a positive Ay reads
Is = {0%: 05, < 0% <65,}

Figure 2 shows the dependence of 0, and 6f;, on dimensionless heat release B (left) and on
Damkohler number (right). The left subfigure in Fig. 2 indicates that 60f;, changes only slightly
with the Damkdhler number, while 65, increases with Da~! values. This means that with a
smaller Damkohler number (larger Da~! value, shorter residence time or longer chemical reaction
time-scale), the stable I regime becomes wider, and the system is more likely to encounter a failed
ignition solution.

The right subfigure in Fig. 2 shows an interesting phenomenon. At small values of dimensionless
heat release (in this figure, when B is less than approximately 5.5), the unstable regime I3 does
not exist. As the B-value increases, the unstable regime widens. Even more noticeably, for large
values of B, the stable extinction regime I, narrows, with 63, approaching zero. Physically, this
indicates that with very high reaction heat release, the system is far less likely to experience failed
spark ignition and is more likely to be successfully ignited.

4 Conclusions
The classic Perfectly Stirred Reactor (PSR) model is extended by introducing an additional

energy source to simulate the spark ignition process in a laminar premixed flame in a counterflow
configuration. A non-dimensional governing ODE system is formulated for both temperature and
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Figure 2: Dependence of 65, and 655, on dimensionless heat release B (left) and on Damkd&hler

Ign

number (right). Left: B = 10, right: Da~! = 40. Other dimensionless variables are 75, = 0.1,

B = 40. Source: from the authors.

fuel mass fraction, which depends on three key dimensionless variables: dimensionless heat release,
dimensionless activation energy, and the Damkdhler number.
The ODE system is analyzed mathematically and, based on the eigenvalue analysis, it is found

that

the equilibrium steady states exhibit two stable regimes: one corresponding to failed ignition

and the other to successful ignition. The failed ignition regime becomes wider as the Damkdhler
number decreases and narrower with higher heat release from the chemical reaction. Further
investigation by directly integrating the non-dimensional ODE system is being carried out to
understand the impact of the Damkdhler number, spark duration time, and dimensionless heat
release on the ignition process.
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