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Resumo. Este trabalho apresenta uma análise numérica da resposta dinâmica de um sistema es-
trutural acoplado a um amortecedor de coluna de líquido sintonizado (TLCD), com o objetivo de
avaliar sua eficácia no controle passivo de vibrações sob excitação estocástica. A equação diferencial
do movimento do sistema foi resolvida numericamente utilizando o método Runge-Kutta adaptativo
(RK45). Os resultados demonstraram que o TLCD reduz de forma significativa as amplitudes de
deslocamento e velocidade do sistema principal, validando a eficácia do dispositivo em aplicações
práticas de engenharia civil ou mecânica. O estudo destaca ainda a importância da análise para-
métrica numérica para otimizar os parâmetros físicos e geométricos do TLCD, contribuindo para
futuros desenvolvimentos e aplicações desses dispositivos.
Palavras-chave. Análise de Vibrações, Amortecedor Passivo, Equações Diferenciais, Cálculo Nu-
mérico, Matemática Aplicada

1 Introdução
O controle de vibrações indesejadas é essencial em diversas aplicações, abrangendo desde a

engenharia civil até sistemas mecânicos e aeroespaciais. Para mitigar esses efeitos, amortecedores
são amplamente utilizados como dispositivos de controle de vibração [1]. Dentre as diferentes
categorias de amortecedores, destacam-se os de ação passiva, que se caracterizam pela capacidade
de dissipar energia sem a necessidade de fontes externas de alimentação, apresentando desempenho
otimizado quando projetados com base em critérios sistemáticos de otimização [2]. Nesse contexto,
Koutsoloukas, Nikitas e Aristidou [3] concluem que os amortecedores de massa sintonizados (Tuned
Mass Damper - TMD) passivos continuam sendo a solução predominante na indústria, apesar dos
avanços em tecnologias de amortecimento semiativas, ativas e híbridas. Segundo os autores, essa
predominância se deve à confiabilidade e ao menor custo dos amortecedores de ação passiva.

Dentre as soluções passivas, os amortecedores de coluna de líquido sintonizado (Tuned Liquid
Column Dampers - TLCD) surgem como uma alternativa eficaz para o controle de vibração. Esses
dispositivos, conforme explicado no trabalho de Konar e Ghosh [4], podem assumir diferentes con-
figurações, empregam o movimento de um fluido em uma coluna para dissipar energia e exploram
a ressonância entre o fluido e a estrutura principal. O TLCD tem sido amplamente utilizado em
diversas áreas da engenharia devido à sua simplicidade construtiva e eficiência na atenuação de
vibrações. De fato, conforme constatado por Khodaie [5], embora a capacidade de controle do
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TMD seja relativamente superior à do TLCD, a maior segurança operacional, o menor custo de
instalação e manutenção e a versatilidade de aplicação do TLCD o tornam uma alternativa mais
viável para diversas aplicações práticas.

A análise da equação do movimento de um sistema com TLCD permite compreender o efeito
desse tipo de amortecedor e otimizar seus parâmetros para maximizar a dissipação de energia.
Com base no trabalho de Sadek, Mohraz e Lew [6] e em correlação com a pesquisa de Di Matteo,
Lo Iacono, Navarra e Pirrotta [7], a equação do movimento de um sistema com dois graus de
liberdade, composto por um sistema SDOF (Single Degree of Freedom) acoplado a um TLCD, é
descrita pela equação (1), cujos parâmetros estão ilustrados na Figura 1 (a).[
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Figura 1: (a) Modelo dinâmico simplificado de um sistema com um grau de liberdade e um TLCD
anexado, ilustrando os principais parâmetros do sistema vibratório. (b) Bancada experimental

para ensaios, composta por: (1) TLCD, responsável pela dissipação passiva de energia; (2)
plataforma superior de fixação; (3) hastes de alumínio que sustentam a estrutura e, (4) base
deslizante que permite o movimento oscilatório do sistema. Fonte: Produzido pelos autores.

Os parâmetros do sistema são definidos da seguinte forma: Ms representa a massa do sistema
principal; γ é a densidade do fluido; ξ = η.ν2 onde η representa a perda de carga e ν a razão entre
as áreas das seções transversais vertical e horizontal do TLCD, respectivamente denotadas por Av e
Ah; α corresponde à razão entre a largura do tubo B e o comprimento efetivo do fluido L = 2h+νB.
A constante gravitacional é representada por g. Além disso, Cs é o coeficiente de amortecimento
do sistema principal e Ks a rigidez do sistema. Por fim, x(t) e y(t) são, respectivamente, o
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deslocamento relativo do sistema principal e deslocamento do líquido nas colunas verticais do
TLCD, e ẍg(t) a aceleração do solo.

Portanto, o presente trabalho trata da solução numérica da equação (1), considerando um
conjunto de parâmetros experimentais físicos e geométricos, cuja bancada de ensaio pode ser ob-
servada na Figura 1 (b). A formulação do problema envolve a análise da influência dos parâmetros
do TLCD na resposta dinâmica do sistema, buscando a compreensão da sua efetividade na redu-
ção de vibrações indesejadas. Como objetivo principal, busca-se validar a adequação do modelo
matemático em representar o comportamento dinâmico observado experimentalmente.

2 Materiais e Métodos
A primeira etapa da pesquisa consistiu na confecção da bancada de ensaio, ilustrado na Figura

1 (b), cuja dimensões são de 0, 60 × 0, 30 × 1, 15 m. Para adequação experimental, foi adicionado
massa, na forma de barra de aço, na plataforma superior da bancada de ensaio. De maneira geral,
as características técnicas da bancada podem ser consultadas na Tabela 1.

Tabela 1: Especificações técnicas da bancada de teste.

Componentes Parâmetro Valor/Descrição

Sistema SDOF

Massa (Ms) 5, 0978 kg
Rigidez (Ks) 143, 5133 N/m
Amortecimento (Cs) 0, 6888 Ns/m
Frequência natural (fn) 0, 8445 Hz

TLCD

Área da seção transversal (Av, Av) 0, 00035 m2

Densidade do líquido (água) (γ) 1000 kg/m3

Perda de carga (η) 1
Largura do tubo (B) 0, 3 m
Nível inicial do líquido (h) 0, 15 m
Frequência natural 0, 9101 Hz

2.1 Matrizes da Equação do Movimento
Da equação (1), temos que a matriz massa (M) é definida conforme equação (2). Fazendo

as devidas substituições dos parâmetros, com base na Tabela 1, tem-se a matriz M com os seus
valores correspondentes.

M =
[
Ms + γAvL γAvαL

γAvαL γAvL

]
=

[
5, 098 0, 1039
0, 1039 0, 2078

]
. (2)

Para obter a matriz rigidez (K), o presente trabalho usou a fórmula básica da rigidez à flexão
de uma viga, representada pela haste de alumínio da bancada de ensaio (ver Figura 1 (b), item 3)
em balanço [8], como expresso na equação (3), onde E é o módulo de elasticidade do material que
para o alumínio está tipicamente em torno de 69 · 109 Pa ou 69 GPa; I é o momento de inércia da
seção transversal da coluna. Para um retângulo, I = w · z3/12, onde w é a largura, z é a espessura
da viga e ℓ é o comprimento da viga.

k = 3EI

ℓ3 . (3)
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Substituindo os valores da Tabela 2, que fornece mais detalhes sobre as vigas, na equação (3),
e tendo em vista que a bancada tem quatro vigas, segue que a rigidez para o sistema principal é
igual a Ks = 4k = 143, 5133 N/m.

Tabela 2: Parâmetros das vigas da bancada de teste.

Característica Valor/Descrição
Material Alumínio
Comprimento (ℓ) 0,73 m
Largura (w) 0,0254 m
Espessura (z) 0,00317 m

Para o fluido temos a força conservativa, oriunda da energia potencial gravitacional do TLCD
e é obtida pela expressão 2γAvg (ver equação (1)) e, com as devidas substituições, tem-se o
6, 7956 N/m. Portanto, a matriz K para a equação (1) é dada pela equação (4).

K =
[
Ks 0
0 2γAvg

]
=

[
143, 5133 0

0 6, 7956

]
. (4)

O amortecimento é uma propriedade mais desafiadora de ser determinada teoricamente, pois
depende de vários fatores, incluindo o atrito interno do material, as condições de contorno, a
presença de outros elementos no sistema, entre outros. Existem várias técnicas experimentais para
determinar o amortecimento, como o método do decaimento logarítmico ou o método da largura
de banda. Entretanto, para esta pesquisa, usar-se-á, para o amortecimento do sistema principal, a
fórmula Cs = 2βωMs, o que implica que estamos adotando uma abordagem analítica simplificada
[9].

O fator de amortecimento β para uma viga de alumínio com extremidades fixas é aproximada-
mente igual a 2% [10]. Esta é uma estimativa geral e pode variar dependendo de vários fatores.
Para obter ω, podemos usar a fórmula para frequência natural fn para um sistema SDOF, em Hz,
que é dada pela equação (5) [11].

fn = 1
2π

√
Ks

Ms
. (5)

Aproveitando o que foi calculado para a matriz M (ver equação (2)) e fazendo as devidas
substituições na equação (5), teremos ω = 0, 8444 Hz. Logo, Cs = 0, 6888 Ns/m.

Portanto, a matriz amortecimento da equação (1), cujo elemento da linha 2 e coluna 2 são
obtidos por substituição dos valores correspondentes na Tabela 1, onde ξ = ην2 e a perda de carga
é igual a η = 1 [12], pode ser observada na equação (6).

C =
[
Cs 0
0 1

2 γAvξ | ẏ(t) |

]
=

[
0, 6888 0

0 0, 175 | ẏ(t) |

]
. (6)

2.2 Método Numérico
Buscando consistência e confiabilidade na solução do sistema de equações diferenciais, o presente

trabalho aplica um integrador de Runge-Kutta de ordem adaptativa. Após avaliar as opções
de implementação, optou-se por utilizar a função solve_ivp, do módulo scipy.integrate em
Python.

A excitação utilizada na solução numérica corresponde a um sinal estocástico, gerado pela
equação (7) em que A(t) é uma variável aleatória com distribuição normal, A(t) ∼ N (0, 1), e Ω(t)
é a frequência angular.

ẍg(t) = A(t) sin
(

tΩ(t)
)

. (7)
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Diferentemente da formulação original, na qual Ω(t) era modelada por uma distribuição normal,
Ω(t) ∼ N

(
ωs, 0, 25

)
, neste trabalho, Ω(t) é considerada como uma variável aleatória com distri-

buição Weibull, escolhida de forma a apresentar valores estritamente positivos. Os parâmetros da
Weibull foram ajustados de modo que a média de Ω(t) seja igual a equação (8), correspondente à
frequência natural do sistema principal e o desvio-padrão seja aproximadamente 0,25.

ωs =

√
Ks

Ms + γAvL
. (8)

Essa formulação permite reproduzir com maior realismo situações de excitação dinâmica, in-
cluindo flutuações tanto na amplitude quanto na frequência da aceleração do solo.

3 Resultados e Discussão
Para avaliar a eficácia do TLCD, as simulações foram realizadas em dois cenários distintos,

com o amortecedor em operação, ou seja, modelo de dois graus de liberdade (2 DOF), e com o
TLCD inoperante, resultando em um modelo simplificado com um único grau de liberdade (SDOF).
Essa comparação permite quantificar objetivamente a eficácia do TLCD em reduzir amplitudes de
deslocamento e velocidades do sistema principal.

Na Figura 2 (a), observa-se que o deslocamento x(t) do sistema principal apresenta amplitude
menor quando o TLCD está ativo, em comparação ao cenário inoperante. Isso sugere que a energia
vibratória está sendo parcialmente absorvida pelo movimento do fluido no TLCD, o que confirma
o funcionamento adequado do amortecedor passivo em reduzir as oscilações do sistema principal.
Em termos de evolução temporal, verifica-se também um amortecimento mais rápido do sinal com
TLCD, demonstrando que a dissipação de energia ocorre de forma mais efetiva.

Figura 2: (a) Evolução temporal do deslocamento x(t) do sistema principal ao longo do tempo,
comparando o caso sem TLCD (linha azul) e com TLCD (linha laranja). (b) Evolução da

velocidade ẋ(t) do sistema principal nas mesmas condições de excitação aleatória sem e com
TLCD. Fonte: Produzido pelos autores.

Na Figura 2 (b) é possível notar a mesma tendência ao comparar as velocidades ẋ(t). A curva
associada ao caso com TLCD apresenta oscilações com amplitude notadamente inferior ao longo
do período de análise, indicando menor velocidade de pico em relação à condição sem TLCD. Esse
resultado reforça a eficácia do dispositivo em limitar não apenas o deslocamento, mas também
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a intensidade das trocas de energia cinética no sistema, o que reduz potencialmente os esforços
dinâmicos na estrutura.

Observa-se no gráfico da Figura 3 (a) que o sistema principal
(
x(t)

)
e o fluido

(
y(t)

)
exibem

amplitudes distintas ao longo do tempo, mostrando que parte da energia vibratória é transferida
para o TLCD. De modo geral,

∣∣y(t)
∣∣ tende a assumir valores mais elevados em certos intervalos,

resultante da absorção e dissipação de energia pelo fluido que, de outra forma, ficaria concentrada
no movimento da massa principal.

Figura 3: (a) Respostas de deslocamento x(t) do sistema principal e de y(t) do fluido no TLCD,
sob excitação aleatória. (b) Velocidades correspondentes ẋ(t) e ẏ(t). Fonte: Produzido pelos

autores.

As velocidades ẋ(t) e ẏ(t), ilustradas no gráfico da Figura 3 (b), mostram oscilações comple-
mentares, reforçando o mecanismo de troca de energia: quando a estrutura começa a vibrar de
forma mais intensa, o fluido responde em oposição de fase, controlando as amplitudes de ẋ(t). Esse
comportamento não linear do amortecimento, associado ao módulo de ẏ(t), contribui para limitar
os picos de velocidade da estrutura, confirmando a efetividade do TLCD no regime estocástico de
excitação.

Esses resultados mostram a possibilidade de realizar análises paramétricas com facilidade, o que
proporciona um entendimento mais detalhado da influência dos parâmetros físicos e geométricos do
TLCD sobre a resposta vibratória do sistema principal. Portanto, o método numérico empregado
serve como ferramenta de validação do comportamento experimental e, além disso, como recurso
para otimizar configurações e características construtivas do amortecedor.

4 Considerações Finais
Neste trabalho, a abordagem numérica utilizando o método Runge-Kutta adaptativo de quarta

e quinta ordem (RK45) mostrou-se eficaz na simulação precisa do comportamento dinâmico do
sistema estrutural acoplado ao TLCD, considerando efeitos não lineares e excitações estocásticas.
Os resultados obtidos demonstraram claramente a eficácia do TLCD como dispositivo passivo
na redução significativa das amplitudes de vibração, fornecendo informações relevantes para o
desenvolvimento de sistemas mais seguros e eficientes na engenharia civil ou mecânica.

Como perspectiva futura, pode-se integrar a presente abordagem numérica com técnicas de
otimização buscando determinar os parâmetros ótimos do TLCD que minimizem efetivamente
as respostas vibratórias. Estudos futuros poderiam explorar comparações sistemáticas entre as
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configurações otimizadas e as metodologias tradicionais de projeto de amortecedores passivos, am-
pliando a compreensão das vantagens práticas e teóricas proporcionadas pela abordagem proposta.
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